Download Free Research In Elementary School Curriculum Book in PDF and EPUB Free Download. You can read online Research In Elementary School Curriculum and write the review.

Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.
The Creative Curriculum comes alive! This videotape-winner of the 1989 Silver Apple Award at the National Educational Film and Video Festival-demonstrates how teachers set the stage for learning by creating a dynamic well-organized environment. It shows children involved in seven of the interest areas in the The Creative Curriculum and explains how they learn in each area. Everyone conducts in-service training workshops for staff and parents or who teaches early childhood education courses will find the video an indispensable tool for explainin appropriate practice.
Now in its third edition, this classic text remains the seminal resource for in-depth information about major concepts and principles of the cultural-historical theory developed by Lev Vygotsky, his students, and colleagues, as well as three generations of neo-Vygotskian scholars in Russia and the West. Featuring two new chapters on brain development and scaffolding in the zone of proximal development, as well as additional content on technology, dual language learners, and students with disabilities, this new edition provides the latest research evidence supporting the basics of the cultural-historical approach alongside Vygotskian-based practical implications. With concrete explanations and strategies on how to scaffold young children’s learning and development, this book is essential reading for students of early childhood theory and development.
Includes an access code for online materials.
The book presents comparative analyses of five elementary mathematics curriculum programs used in the U.S. from three different perspectives: the mathematical emphasis, the pedagogical approaches, and how authors communicate with teachers. These perspectives comprise a framework for examining what curriculum materials are comprised of, what is involved in reading and interpreting them, and how curriculum authors can and do support teachers in this process. Although the focus of the analysis is 5 programs used at a particular point in time, this framework extends beyond these specific programs and illuminates the complexity of curriculum materials and their role in teaching in general. Our analysis of the mathematical emphasis considers how the mathematics content is presented in each program, in terms of sequencing, the nature of mathematical tasks (cognitive demand and ongoing practice), and the way representations are used. Our analysis of the pedagogical approach examines explicit and implicit messages about how students should interact with mathematics, one another, the teacher, and the textbook around these mathematical ideas, as well as the role of the teacher. In order to examine how curriculum authors support teachers, we analyze how they communicate with teachers and what they communicate about, including the underlying mathematics, noticing student thinking, and rationale for design elements. The volume includes a chapter on curriculum design decisions based on interviews with curriculum authors.
Researchers, historians, and philosophers of science have debated the nature of scientific research in education for more than 100 years. Recent enthusiasm for "evidence-based" policy and practice in educationâ€"now codified in the federal law that authorizes the bulk of elementary and secondary education programsâ€"have brought a new sense of urgency to understanding the ways in which the basic tenets of science manifest in the study of teaching, learning, and schooling. Scientific Research in Education describes the similarities and differences between scientific inquiry in education and scientific inquiry in other fields and disciplines and provides a number of examples to illustrate these ideas. Its main argument is that all scientific endeavors share a common set of principles, and that each fieldâ€"including education researchâ€"develops a specialization that accounts for the particulars of what is being studied. The book also provides suggestions for how the federal government can best support high-quality scientific research in education.
"The skill cards list the steps needed to successfully perform each of the 60 prosocial skills outlined in Skillstreaming the elementary school child. This package contains eight cards for each skill--480 cards in all--enough to accomodate a skillstreaming group of eight students"--insert in box.
The untold story of the root cause of America's education crisis--and the seemingly endless cycle of multigenerational poverty. It was only after years within the education reform movement that Natalie Wexler stumbled across a hidden explanation for our country's frustrating lack of progress when it comes to providing every child with a quality education. The problem wasn't one of the usual scapegoats: lazy teachers, shoddy facilities, lack of accountability. It was something no one was talking about: the elementary school curriculum's intense focus on decontextualized reading comprehension "skills" at the expense of actual knowledge. In the tradition of Dale Russakoff's The Prize and Dana Goldstein's The Teacher Wars, Wexler brings together history, research, and compelling characters to pull back the curtain on this fundamental flaw in our education system--one that fellow reformers, journalists, and policymakers have long overlooked, and of which the general public, including many parents, remains unaware. But The Knowledge Gap isn't just a story of what schools have gotten so wrong--it also follows innovative educators who are in the process of shedding their deeply ingrained habits, and describes the rewards that have come along: students who are not only excited to learn but are also acquiring the knowledge and vocabulary that will enable them to succeed. If we truly want to fix our education system and unlock the potential of our neediest children, we have no choice but to pay attention.
This resource-rich book includes planning and instructional tools, prompts, discussion starters, teaching points, intervention suggestions, and more to support all students. Plus, an online resource bank with downloadables and videos. Jan Richardson's latest thinking on Guided Reading helps teachers take the next step forward to pinpoint instruction that supports every reader. Richardson uses the Assess-Decide-Guide framework to take a deep dive into each guided reading stage, covering PreA to Fluent readers, their needs, and the best ways to support and challenge them. A master reading teacher at all levels, Richardson skillfully addresses all the factors that make or break guided reading lessons: support for striving readers, strategies for reaching ELLs, making home-school connections--all with an unwavering focus on reading for deeper comprehension, to develop thoughtful, independent readers. The book includes dozens of must-have record-keeping, assessment, and reference forms, as well as how-to video links that provide show Jan in action with diverse readers.
Bolstered by new standards and new initiatives to promote STEM education, engineering is making its way into the school curriculum. This comprehensive introduction will help elementary educators integrate engineering into their classroom, school, or district in age-appropriate, inclusive, and engaging ways. Building on the work of a Museum of Science team that has spent 15 years developing elementary engineering curricula, this book outlines how engineering can be integrated into a broader STEM curriculum, details its pedagogical benefits to students, and includes classroom examples to help educators tailor instruction to engage diverse students. Featuring vignettes, case studies, videos, research results, and assessments, this resource will help readers visualize high-quality elementary engineering and understand the theoretical principles in context. Book Features: Frameworks to help teachers create curricula and structure activities. A focus on engaging the diversity of learners in today’s classrooms. Experiences from the nation’s leading elementary education curriculum that has reached 13.3 million children and 165,000 educators. Go to eie.org/book for videos, assessment tools, reproducibles, and other instructional supports that enliven the text.