Download Free Research Bold Fmri Theory And Practice Book in PDF and EPUB Free Download. You can read online Research Bold Fmri Theory And Practice and write the review.

Functional MRI: Basic Principles and Emerging Clinical Applications provides an overview of the basic principles of fMRI for clinicians with minimal knowledge of the imaging technique and its research potential and clinical applications. The text is divided into two parts, with Section I covering the primary signal measured in fMRI (BOLD), the correlation between neuronal activity and the BOLD signal, and how the data is analyzed and interpreted in fMRI. Section II explores applications of fMRI in cognitive neuroscience and common psychiatric disorders, surgical planning in neurosurgery, anesthesia and the intensive care unit, and more. Timely and highly accessible, this book is a valuable resource for researchers and clinicians interested in understanding what fMRI is, how it works, and its applications.
Functional magnetic resonance imaging (fMRI) measures quick, tiny metabolic changes that take place in the brain, providing the most sensitive method currently available for identifying, investigating, and monitoring brain tumors, stroke, and chronic disorders of the nervous system like multiple sclerosis, and brain abnormalities related to dementia or seizures. This overview explains the principles of fMRI, scanning methodlogies, experimental design and data analysis, and outlines challenges and limitations of fMRI. It also provides a detailed neuroanatomic atlas, and describes clinical applications of fMRI in cognitive, sensory, and motor cases, translating research into clinical application.
It has become accepted in the neuroscience community that perception and performance are quintessentially multisensory by nature. Using the full palette of modern brain imaging and neuroscience methods, The Neural Bases of Multisensory Processes details current understanding in the neural bases for these phenomena as studied across species, stages of development, and clinical statuses. Organized thematically into nine sub-sections, the book is a collection of contributions by leading scientists in the field. Chapters build generally from basic to applied, allowing readers to ascertain how fundamental science informs the clinical and applied sciences. Topics discussed include: Anatomy, essential for understanding the neural substrates of multisensory processing Neurophysiological bases and how multisensory stimuli can dramatically change the encoding processes for sensory information Combinatorial principles and modeling, focusing on efforts to gain a better mechanistic handle on multisensory operations and their network dynamics Development and plasticity Clinical manifestations and how perception and action are affected by altered sensory experience Attention and spatial representations The last sections of the book focus on naturalistic multisensory processes in three separate contexts: motion signals, multisensory contributions to the perception and generation of communication signals, and how the perception of flavor is generated. The text provides a solid introduction for newcomers and a strong overview of the current state of the field for experts.
Magnetic Resonance Imaging (MRI) is among the most important medical imaging techniques available today. There is an installed base of approximately 15,000 MRI scanners worldwide. Each of these scanners is capable of running many different "pulse sequences", which are governed by physics and engineering principles, and implemented by software programs that control the MRI hardware. To utilize an MRI scanner to the fullest extent, a conceptual understanding of its pulse sequences is crucial. Handbook of MRI Pulse Sequences offers a complete guide that can help the scientists, engineers, clinicians, and technologists in the field of MRI understand and better employ their scanner. Explains pulse sequences, their components, and the associated image reconstruction methods commonly used in MRI Provides self-contained sections for individual techniques Can be used as a quick reference guide or as a resource for deeper study Includes both non-mathematical and mathematical descriptions Contains numerous figures, tables, references, and worked example problems
Functional Magnetic Resonance Imaging (fMRI) has become a standard tool for mapping the working brain's activation patterns, both in health and in disease. It is an interdisciplinary field and crosses the borders of neuroscience, psychology, psychiatry, radiology, mathematics, physics and engineering. Developments in techniques, procedures and our understanding of this field are expanding rapidly. In this second edition of Introduction to Functional Magnetic Resonance Imaging, Richard Buxton – a leading authority on fMRI – provides an invaluable guide to how fMRI works, from introducing the basic ideas and principles to the underlying physics and physiology. He covers the relationship between fMRI and other imaging techniques and includes a guide to the statistical analysis of fMRI data. This book will be useful both to the experienced radiographer, and the clinician or researcher with no previous knowledge of the technology.
An accessible introduction to the history, fundamental concepts, challenges, and controversies of the fMRI by one of the pioneers in the field. The discovery of functional MRI (fMRI) methodology in 1991 was a breakthrough in neuroscience research. This non-invasive, relatively high-speed, and high sensitivity method of mapping human brain activity enabled observation of subtle localized changes in blood flow associated with brain activity. Thousands of scientists around the world have not only embraced fMRI as a new and powerful method that complemented their ongoing studies but have also gone on to redirect their research around this revolutionary technique. This volume in the MIT Press Essential Knowledge series offers an accessible introduction to the history, fundamental concepts, challenges, and controversies of fMRI, written by one of the pioneers in the field. Peter Bandettini covers the essentials of fMRI, providing insight and perspective from his nearly three decades of research. He describes other brain imaging and assessment methods; the sources of fMRI contrasts; the basic methodology, from hardware to pulse sequences; brain activation experiment design strategies; and data and image processing. A unique, standalone chapter addresses major controversies in the field, outlining twenty-six challenges that have helped shape fMRI research. Finally, Bandettini lays out the four essential pillars of fMRI: technology, methodology, interpretation, and applications. The book can serve as a guide for the curious nonexpert and a reference for both veteran and novice fMRI scientists.
Over the last decade, some of the greatest achievements in the field of neuroimaging have been related to remarkable advances in magnetic resonance techniques, including diffusion, perfusion, magnetic resonance spectroscopy, and functional MRI. Such techniques have provided valuable insights into tissue microstructure, microvasculature, metabolism and brain connectivity. Previously available mostly in research environments, these techniques are now becoming part of everyday clinical practice in a plethora of clinical MR systems. Nevertheless, despite growing interest and wider acceptance, there remains a lack of a comprehensive body of knowledge on the subject, exploring the intrinsic complexity and physical difficulty of the techniques. This book focuses on the basic principles and theories of diffusion, perfusion, magnetic resonance spectroscopy, and functional MRI. It also explores their clinical applications and places emphasis on the associated artifacts and pitfalls with a comprehensive and didactic approach. This book aims to bridge the gap between research applications and clinical practice. It will serve as an educational manual for neuroimaging researchers and radiologists, neurologists, neurosurgeons, and physicists with an interest in advanced MR techniques. It will also be a useful reference text for experienced clinical scientists who wish to optimize their multi-parametric imaging approach.
This volume explores the revolutionary fMRI field from basic principles to state-of-the-art research. It covers a broad spectrum of topics, including the history of fMRI's development using endogenous MR blood contrast, neurovascular coupling, pulse sequences for fMRI, quantitative fMRI; fMRI of the visual system, auditory cortex, and sensorimotor system; genetic imaging using fMRI, multimodal neuroimaging, brain bioenergetics and function and molecular-level fMRI. Comprehensive and intuitively structured, this book engages the reader with a first-person account of the development and history of the fMRI field by the authors. The subsequent sections examine the physiological basis of fMRI, the basic principles of fMRI and its applications and the latest advances of the technology, ending with a discussion of fMRI’s future. fMRI: From Nuclear Spins to Brain Function, co-edited by leading and renowned fMRI researchers Kamil Ugurbil, Kamil Uludag and Lawrence Berliner, is an ideal resource for clinicians and researchers in the fields of neuroscience, psychology and MRI physics.
Attention: Theory and Practice provides a balance between a readable overview of attention and an emphasis on how theories and paradigms for the study of attention have developed. The book highlights the important issues and major findings while giving sufficient details of experimental studies, models, and theories so that results and conclusions are easy to follow and evaluate. Rather than brushing over tricky technical details, the authors explain them clearly, giving readers the benefit of understanding the motivation for and techniques of the experiments in order to allow readers to think through results, models, and theories for themselves. Attention is an accessible text for advanced undergraduate and graduate students in psychology, as well as an important resource for researchers and practitioners interested in gaining an overview of the field of attention.