Download Free Research Anthology On Synthesis Characterization And Applications Of Nanomaterials Vol 1 Book in PDF and EPUB Free Download. You can read online Research Anthology On Synthesis Characterization And Applications Of Nanomaterials Vol 1 and write the review.

The use of nanotechnologies continues to grow, as nanomaterials have proven their versatility and use in many different fields and industries within the scientific profession. Using nanotechnology, materials can be made lighter, more durable, more reactive, and more efficient leading nanoscale materials to enhance many everyday products and processes. With many different sizes, shapes, and internal structures, the applications are endless. These uses range from pharmaceutics to materials such as cement or cloth, electronics, environmental sustainability, and more. Therefore, there has been a recent surge of research focused on the synthesis and characterizations of these nanomaterials to better understand how they can be used, their applications, and the many different types. The Research Anthology on Synthesis, Characterization, and Applications of Nanomaterials seeks to address not only how nanomaterials are created, used, or characterized, but also to apply this knowledge to the multidimensional industries, fields, and applications of nanomaterials and nanoscience. This includes topics such as both natural and manmade nanomaterials; the size, shape, reactivity, and other essential characteristics of nanomaterials; challenges and potential effects of using nanomaterials; and the advantages of nanomaterials with multidisciplinary uses. This book is ideally designed for researchers, engineers, practitioners, industrialists, educators, strategists, policymakers, scientists, and students working in fields that include materials engineering, engineering science, nanotechnology, biotechnology, microbiology, drug design and delivery, medicine, and more.
Carbon-based materials have emerged as versatile and effective solutions in environmental remediation. These materials possess exceptional adsorption properties that enable them to capture and remove a wide range of pollutants from air and water. Their high surface area, porosity, and stability make them ideal for tackling contaminants such as heavy metals, organic compounds, and pesticides. By leveraging these unique properties, carbon-based materials play a crucial role in mitigating environmental pollution and promoting sustainable practices. Carbon-Based Materials and Environmental Remediation: Graphene, Biochar, and More explores the applications of carbon-based materials such as graphene, biochar, and more for environmental remediation. This book delves into the unique properties and mechanisms that make these materials effective in addressing various environmental challenges. Covering topics such as carbon nanomaterials, pesticide remediation, and water pollution control, this book is an essential resource for environmental scientists, chemical engineers, materials scientists, academic researchers, graduate and postgraduate students, and more.
This Special Issue covers solution synthesis, processing, and applications of non-metallic nanomaterials. Zhang et. al. and Jiang et. al. focus on synthesis of kesterite materials, and Wu et. al. and Zhang et. al. focus on synthesis of copper chromium oxide delafossite nanomaterials. Three of these papers discuss solar cell applications using these materials. Yun and Park's review paper explores the self-assembly of complex nanostructures. Bhalothia et al. show enhanced catalytic activity for NiOx@Pt nanostructures and Wu et. al. report high-sensitivity ammonia sensors made from SnO nanoshells. On flexible electronics, Nakamura et. al. developed Cu nitride ink for rapid photonic processing of conducting lines, Liu et. al. made Au/HfO2/Pt resistive random access memory devices, and Moreira et al. fabricated solution combustion oxide thin film transistors.
Polymeric Nanosystems: Theranostic Nanosystems, Volume One examines the applications of nanotherapeutic systems and nanodiagnostics in relation to polymeric nanosystems. In the last decade, numerous biopolymers have been utilized to prepare polymeric nanosystems for therapeutic applications. These biopolymers include polylactic acid, polylactide-co-glycolide, polycaprolactone, acrylic polymers, cellulose and cellulose derivatives, alginates, chitosan, gellan gum, gelatin, albumin, chontroitin sulfate, hyaluronic acid, guar gum, gum Arabic, gum tragacanth, xanthan gum, and starches. Besides these biopolymers, grafted polymers are also being used as advanced polymeric materials to prepare many theranostic nanocarriers and nanoformulations. This book explores the array of polymeric nanosystems to understand therapeutic potentials. It will be useful to pharmaceutical scientists, including industrial pharmacists and analytical scientists, health care professionals, and regulatory scientists actively involved in the pharmaceutical product and process development of tailor-made polysaccharides in drug delivery applications. - Contains in-depth discussions of the polymeric nanosystems including high-quality graphics, flowcharts, and graphs for enhanced understanding - Reviews the literature on polymeric nanosystems while also suggesting new avenues - Includes contributions in all areas of polymeric nanosystems, providing a thorough and interdisciplinary work
Technological tools and computational techniques have enhanced the healthcare industry. These advancements have led to significant progress and novel opportunities for biomedical engineering. Biomedical Engineering: Concepts, Methodologies, Tools, and Applications is an authoritative reference source for emerging scholarly research on trends, techniques, and future directions in the field of biomedical engineering technologies. Highlighting a comprehensive range of topics such as nanotechnology, biomaterials, and robotics, this multi-volume book is ideally designed for medical practitioners, professionals, students, engineers, and researchers interested in the latest developments in biomedical technology.
With a selective presentation of topics that makes it accessible for students who have taken introductory university science courses, Understanding Nanomaterials is a training tool for the future workforce in nanotech development. This introductory textbook offers insights into the fundamental principles that govern the fabrication, characterization, and application of nanomaterials. Provides the Background for Fundamental Understanding Assuming only a basic level of competency in physics, chemistry, and biology, the author focuses on the needs of the undergraduate curriculum, discussing important processes such as self-assembly, patterning, and nanolithography. His approach limits mathematical rigor in the presentation of key results and proofs, leaving it to the instructor’s discretion to add more advanced details, or emphasize particular areas of interest. With its combination of discussion-based instruction and explanation of problem-solving skills, this textbook highlights interdisciplinary theory and enabling tools derived from chemistry, biology, physics, medicine, and engineering. It also includes real-world examples related to energy, the environment, and medicine. Author Malkiat S. Johal earned his Ph.D. from the University of Cambridge in England. He later served as a post-doctoral research associate at Los Alamos National Laboratory, New Mexico, where he worked on the nonlinear optical properties of nanoassemblies. Dr. Johal is currently a professor and researcher at Pomona College in Claremont, California. His work focuses on the use of self-assembly and ionic adsorption processes to fabricate nanomaterials for optical and biochemical applications.