Download Free Representations Of Graded Hecke Algebras Associated To Noncrystallographic Root Systems Book in PDF and EPUB Free Download. You can read online Representations Of Graded Hecke Algebras Associated To Noncrystallographic Root Systems and write the review.

Kazhdan and Lusztig classified the simple modules of an affine Hecke algebra Hq (q E C*) provided that q is not a root of 1 (Invent. Math. 1987). Ginzburg had some very interesting work on affine Hecke algebras. Combining these results simple Hq-modules can be classified provided that the order of q is not too small. These Lecture Notes of N. Xi show that the classification of simple Hq-modules is essentially different from general cases when q is a root of 1 of certain orders. In addition the based rings of affine Weyl groups are shown to be of interest in understanding irreducible representations of affine Hecke algebras. Basic knowledge of abstract algebra is enough to read one third of the book. Some knowledge of K-theory, algebraic group, and Kazhdan-Lusztig cell of Cexeter group is useful for the rest
This is an essentially self-contained monograph in an intriguing field of fundamental importance for Representation Theory, Harmonic Analysis, Mathematical Physics, and Combinatorics. It is a major source of general information about the double affine Hecke algebra, also called Cherednik's algebra, and its impressive applications. Chapter 1 is devoted to the Knizhnik-Zamolodchikov equations attached to root systems and their relations to affine Hecke algebras, Kac-Moody algebras, and Fourier analysis. Chapter 2 contains a systematic exposition of the representation theory of the one-dimensional DAHA. It is the simplest case but far from trivial with deep connections in the theory of special functions. Chapter 3 is about DAHA in full generality, including applications to Macdonald polynomials, Fourier transforms, Gauss-Selberg integrals, Verlinde algebras, and Gaussian sums. This book is designed for mathematicians and physicists, experts and students, for those who want to master the double Hecke algebra technique. Visit http://arxiv.org/math.QA/0404307 to read Chapter 0 and selected topics from other chapters.
Hecke algebras arise in representation theory as endomorphism algebras of induced representations. One of the most important classes of Hecke algebras is related to representations of reductive algebraic groups over $p$-adic or finite fields. In 1979, in the simplest (equal parameter) case of such Hecke algebras, Kazhdan and Lusztig discovered a particular basis (the KL-basis) in a Hecke algebra, which is very important in studying relations between representation theory and geometry of the corresponding flag varieties. It turned out that the elements of the KL-basis also possess very interesting combinatorial properties. In the present book, the author extends the theory of the KL-basis to a more general class of Hecke algebras, the so-called algebras with unequal parameters. In particular, he formulates conjectures describing the properties of Hecke algebras with unequal parameters and presents examples verifying these conjectures in particular cases. Written in the author's precise style, the book gives researchers and graduate students working in the theory of algebraic groups and their representations an invaluable insight and a wealth of new and useful information.
Soit L(G,H,s) l'algèbre de Hecke von Neumann associée au triple (G,H,s), où G est un groupe, H est un sous-groupe de G et s est une représentation unitaire de H de dimension finie. Dans le cas particulier où G est muni d'une topologie localement compacte telle que H est ouvert compact et s est fortement continue, L(G,H,s) est une algèbre du coin du produit tensoriel de l'algèbre de von Neumann du groupe de G et de l'algèbre des opérateurs linéaires bornés sur l'espace de Hilbert de s. Dans le cas général où G est un groupe abstrait (sans topologie), il existe un triple (G',H',s') tel que G' est localement compact, H' est ouvert compact, s' est fortement continue et où l'algèbre L(G,H,s) est isomorphe à L(G',H',s'); autrement dit, L(G,H,s) s'identifie au coin d'une algèbre bien connue.
This graduate textbook presents a concrete and up-to-date introduction to the theory of Coxeter groups. The book is self-contained, making it suitable either for courses and seminars or for self-study. The first part is devoted to establishing concrete examples. Finite reflection groups acting on Euclidean spaces are discussed, and the first part ends with the construction of the affine Weyl groups, a class of Coxeter groups that plays a major role in Lie theory. The second part (which is logically independent of, but motivated by, the first) develops from scratch the properties of Coxeter groups in general, including the Bruhat ordering and the seminal work of Kazhdan and Lusztig on representations of Hecke algebras associated with Coxeter groups is introduced. Finally a number of interesting complementary topics as well as connections with Lie theory are sketched. The book concludes with an extensive bibliography on Coxeter groups and their applications.