Download Free Reports Of The Committee On Research Book in PDF and EPUB Free Download. You can read online Reports Of The Committee On Research and write the review.

Fusion offers the prospect of virtually unlimited energy. The United States and many nations around the world have made enormous progress toward achieving fusion energy. With ITER scheduled to go online within a decade and demonstrate controlled fusion ten years later, now is the right time for the United States to develop plans to benefit from its investment in burning plasma research and take steps to develop fusion electricity for the nation's future energy needs. At the request of the Department of Energy, the National Academies of Sciences, Engineering, and Medicine organized a committee to develop a strategic plan for U.S. fusion research. The final report's two main recommendations are: (1) The United States should remain an ITER partner as the most cost-effective way to gain experience with a burning plasma at the scale of a power plant. (2) The United States should start a national program of accompanying research and technology leading to the construction of a compact pilot plant that produces electricity from fusion at the lowest possible capital cost.
The study edition of book the Los Angeles Times called, "The most extensive review of U.S. intelligence-gathering tactics in generations." This is the complete Executive Summary of the Senate Intelligence Committee's investigation into the CIA's interrogation and detention programs -- a.k.a., The Torture Report. Based on over six million pages of secret CIA documents, the report details a covert program of secret prisons, prisoner deaths, interrogation practices, and cooperation with other foreign and domestic agencies, as well as the CIA's efforts to hide the details of the program from the White House, the Department of Justice, the Congress, and the American people. Over five years in the making, it is presented here exactly as redacted and released by the United States government on December 9, 2014, with an introduction by Daniel J. Jones, who led the Senate investigation. This special edition includes: • Large, easy-to-read format. • Almost 3,000 notes formatted as footnotes, exactly as they appeared in the original report. This allows readers to see obscured or clarifying details as they read the main text. • An introduction by Senate staffer Daniel J. Jones who led the investigation and wrote the report for the Senate Intelligence Committee, and a forward by the head of that committee, Senator Dianne Feinstein.
Collaborations of physicians and researchers with industry can provide valuable benefits to society, particularly in the translation of basic scientific discoveries to new therapies and products. Recent reports and news stories have, however, documented disturbing examples of relationships and practices that put at risk the integrity of medical research, the objectivity of professional education, the quality of patient care, the soundness of clinical practice guidelines, and the public's trust in medicine. Conflict of Interest in Medical Research, Education, and Practice provides a comprehensive look at conflict of interest in medicine. It offers principles to inform the design of policies to identify, limit, and manage conflicts of interest without damaging constructive collaboration with industry. It calls for both short-term actions and long-term commitments by institutions and individuals, including leaders of academic medical centers, professional societies, patient advocacy groups, government agencies, and drug, device, and pharmaceutical companies. Failure of the medical community to take convincing action on conflicts of interest invites additional legislative or regulatory measures that may be overly broad or unduly burdensome. Conflict of Interest in Medical Research, Education, and Practice makes several recommendations for strengthening conflict of interest policies and curbing relationships that create risks with little benefit. The book will serve as an invaluable resource for individuals and organizations committed to high ethical standards in all realms of medicine.
This report describes the work of the Committee on Proposal Evaluation for Allocation of Supercomputing Time for the Study of Molecular Dynamics, Eighth Round. The committee evaluated submissions received in response to a Request for Proposals (RFP) for biomolecular simulation time on Anton 2, a supercomputer specially designed and built by D.E. Shaw Research (DESRES). Over the past five years, DESRES has made an Anton or Anton 2 system housed at the Pittsburgh Supercomputing Center (PSC) available to the non-commercial research community, based on the advice of previous National Research Council committees. As in prior rounds, the goal of the eighth RFP for simulation time on Anton 2 is to continue to facilitate breakthrough research in the study of biomolecular systems by providing a massively parallel system specially designed for molecular dynamics simulations. The program seeks to continue to support research that addresses important and high impact questions demonstrating a clear need for Anton's special capabilities. Report of the Committee on Proposal Evaluation for Allocation of Supercomputing Time for the Study of Molecular Dynamics, Eighth Round is the report of the committee's evaluation of proposals based on scientific merit, justification for requested time allocation, and investigator qualifications and past accomplishments. This report identifies the proposals that best met the selection criteria.
Healthcare decision makers in search of reliable information that compares health interventions increasingly turn to systematic reviews for the best summary of the evidence. Systematic reviews identify, select, assess, and synthesize the findings of similar but separate studies, and can help clarify what is known and not known about the potential benefits and harms of drugs, devices, and other healthcare services. Systematic reviews can be helpful for clinicians who want to integrate research findings into their daily practices, for patients to make well-informed choices about their own care, for professional medical societies and other organizations that develop clinical practice guidelines. Too often systematic reviews are of uncertain or poor quality. There are no universally accepted standards for developing systematic reviews leading to variability in how conflicts of interest and biases are handled, how evidence is appraised, and the overall scientific rigor of the process. In Finding What Works in Health Care the Institute of Medicine (IOM) recommends 21 standards for developing high-quality systematic reviews of comparative effectiveness research. The standards address the entire systematic review process from the initial steps of formulating the topic and building the review team to producing a detailed final report that synthesizes what the evidence shows and where knowledge gaps remain. Finding What Works in Health Care also proposes a framework for improving the quality of the science underpinning systematic reviews. This book will serve as a vital resource for both sponsors and producers of systematic reviews of comparative effectiveness research.
Science and technology are embedded in virtually every aspect of modern life. As a result, people face an increasing need to integrate information from science with their personal values and other considerations as they make important life decisions about medical care, the safety of foods, what to do about climate change, and many other issues. Communicating science effectively, however, is a complex task and an acquired skill. Moreover, the approaches to communicating science that will be most effective for specific audiences and circumstances are not obvious. Fortunately, there is an expanding science base from diverse disciplines that can support science communicators in making these determinations. Communicating Science Effectively offers a research agenda for science communicators and researchers seeking to apply this research and fill gaps in knowledge about how to communicate effectively about science, focusing in particular on issues that are contentious in the public sphere. To inform this research agenda, this publication identifies important influences â€" psychological, economic, political, social, cultural, and media-related â€" on how science related to such issues is understood, perceived, and used.
Chronic pain costs the nation up to $635 billion each year in medical treatment and lost productivity. The 2010 Patient Protection and Affordable Care Act required the Department of Health and Human Services (HHS) to enlist the Institute of Medicine (IOM) in examining pain as a public health problem. In this report, the IOM offers a blueprint for action in transforming prevention, care, education, and research, with the goal of providing relief for people with pain in America. To reach the vast multitude of people with various types of pain, the nation must adopt a population-level prevention and management strategy. The IOM recommends that HHS develop a comprehensive plan with specific goals, actions, and timeframes. Better data are needed to help shape efforts, especially on the groups of people currently underdiagnosed and undertreated, and the IOM encourages federal and state agencies and private organizations to accelerate the collection of data on pain incidence, prevalence, and treatments. Because pain varies from patient to patient, healthcare providers should increasingly aim at tailoring pain care to each person's experience, and self-management of pain should be promoted. In addition, because there are major gaps in knowledge about pain across health care and society alike, the IOM recommends that federal agencies and other stakeholders redesign education programs to bridge these gaps. Pain is a major driver for visits to physicians, a major reason for taking medications, a major cause of disability, and a key factor in quality of life and productivity. Given the burden of pain in human lives, dollars, and social consequences, relieving pain should be a national priority.
There is growing enthusiasm in the scientific community about the prospect of mapping and sequencing the human genome, a monumental project that will have far-reaching consequences for medicine, biology, technology, and other fields. But how will such an effort be organized and funded? How will we develop the new technologies that are needed? What new legal, social, and ethical questions will be raised? Mapping and Sequencing the Human Genome is a blueprint for this proposed project. The authors offer a highly readable explanation of the technical aspects of genetic mapping and sequencing, and they recommend specific interim and long-range research goals, organizational strategies, and funding levels. They also outline some of the legal and social questions that might arise and urge their early consideration by policymakers.
The integrity of knowledge that emerges from research is based on individual and collective adherence to core values of objectivity, honesty, openness, fairness, accountability, and stewardship. Integrity in science means that the organizations in which research is conducted encourage those involved to exemplify these values in every step of the research process. Understanding the dynamics that support â€" or distort â€" practices that uphold the integrity of research by all participants ensures that the research enterprise advances knowledge. The 1992 report Responsible Science: Ensuring the Integrity of the Research Process evaluated issues related to scientific responsibility and the conduct of research. It provided a valuable service in describing and analyzing a very complicated set of issues, and has served as a crucial basis for thinking about research integrity for more than two decades. However, as experience has accumulated with various forms of research misconduct, detrimental research practices, and other forms of misconduct, as subsequent empirical research has revealed more about the nature of scientific misconduct, and because technological and social changes have altered the environment in which science is conducted, it is clear that the framework established more than two decades ago needs to be updated. Responsible Science served as a valuable benchmark to set the context for this most recent analysis and to help guide the committee's thought process. Fostering Integrity in Research identifies best practices in research and recommends practical options for discouraging and addressing research misconduct and detrimental research practices.