Download Free Report On The Loss Of The Mars Polar Lander And Deep Space 2 Missions Book in PDF and EPUB Free Download. You can read online Report On The Loss Of The Mars Polar Lander And Deep Space 2 Missions and write the review.

NASA's Mars Surveyor Program (MSP) began in 1994 with plans to send spacecraft to Mars every 26 months. Mars Global Surveyor (MGS), a global mapping mission, was launched in 1996 and is currently orbiting Mars. Mars Surveyor '98 consisted of Mars Climate Orbiter (MCO) and Mars Polar Lander (MPL). Lockheed Martin Astronautics (LMA) was the prime contractor for Mars Surveyor '98. The Jet Propulsion Laboratory (JPL), California Institute of Technology, manages the Mars Surveyor Program for NASA's Office of Space Science. MPL was developed under very tight funding constraints. The combined development cost of MPL and MCO, including the cost of the two launch vehicles, was approximately the same as the development cost of the Mars Pathfinder mission, including the cost of its single launch vehicle. The MPL project accepted the challenge to develop effective implementation methodologies consistent with programmatic requirements. Albee, Arden and Battel, Steven and Brace, Richard and Burdick, Garry and Casani, John and Lavell, Jeffrey and Leising, Charles and MacPherson, Duncan and Burr, Peter and Dipprey, Duane Jet Propulsion Laboratory; Langley Research Center
Although the Jet Propulsion Laboratory in Pasadena, California, has become synonymous with the United States’ planetary exploration during the past half century, its most recent focus has been on Mars. Beginning in the 1990s and continuing through the Mars Phoenix mission of 2007, JPL led the way in engineering an impressive, rapidly evolving succession of Mars orbiters and landers, including roving robotic vehicles whose successful deployment onto the Martian surface posed some of the most complicated technical problems in space flight history. In Exploration and Engineering, Erik M. Conway reveals how JPL engineers’ creative technological feats led to major breakthroughs in Mars exploration. He takes readers into the heart of the lab’s problem-solving approach and management structure, where talented scientists grappled with technical challenges while also coping, not always successfully, with funding shortfalls, unrealistic schedules, and managerial turmoil. Conway, JPL’s historian, offers an insider’s perspective into the changing goals of Mars exploration, the ways in which sophisticated computer simulations drove the design process, and the remarkable evolution of landing technologies over a thirty-year period. "A masterpiece of research and writing."—Quest: History of Spaceflight Quarterly "A 'must' for any reader of modern astronomy who wants insights into how the lab conducts its research, solves problems, and handle[s] technological challenges."—Midwest Book Review "A great tale of ambition, mishap and recovery, building on extensive archival research and interviews with JPL managers, scientists and engineers, to deliver a detailed overview of each mission's feats and failures . . . Exploration and Engineering is a great book for everyone seriously interested in the struggles and achievements of JPL as NASA's centre for Mars exploration."—Sky at Night Erik M. Conway is a historian of science and technology at the Jet Propulsion Laboratory, California Institute of Technology. He is the author of Atmospheric Science at NASA: A History.
PRINT FORMAT ONLY NOTE: NO FURTHER DISCOUNT FOR THIS PRINT PRODUCT- OVERSTOCK SALE -- Significantly reduced list price This new book from the NASA History Series tackles an interesting duo of biological problems that will be familiar to anybody who has seen photos of Apollo astronauts quarantined after their return to Earth. Namely, how do we avoid contaminating celestial bodies with Earthly germs when we send spacecraft to study these bodies, and how do we avoid spreading foreign biological matter from space when our robotic and human spacefarers return to Earth? Biological matter from an external system could potentially cause an unchecked epidemic either on Earth or in space so strict precautions are necessary. Each time a space vehicle visits another world it runs the risk of forever changing that extraterrestrial environment. We are surrounded on Earth by a mélange of different microorganisms, and if some of these hitchhike onboard a space mission, they could contaminate and start colonies on a different planet. Such an occurrence would irrevocably alter the nature of that world, compromise all future scientific exploration of the body, and possibly damage any extant life on it. By inadvertently carrying exotic organisms back to Earth on our spacecraft, we also risk the release of biohazardous materials into our own ecosystem. Such concerns were recognized by scientists even before the 1957 launch of Sputnik. This book presents the history of planetary protection by tracing the responses to the above concerns on NASA’s missions to the Moon, Mars, Venus, Jupiter, Saturn, and many smaller bodies of our solar system. The book relates the extensive efforts put forth by NASA to plan operations and prepare space vehicles that return exemplary science without contaminating the biospheres of other worlds or our own. To protect irreplaceable environments, NASA has committed to conducting space exploration in a manner that is protective of the bodies visited, as well as of our own planet.
“Sarah Stewart Johnson interweaves her own coming-of-age story as a planetary scientist with a vivid history of the exploration of Mars in this celebration of human curiosity, passion, and perseverance.”—Alan Lightman, author of Einstein’s Dreams WINNER OF THE PHI BETA KAPPA AWARD FOR SCIENCE • NAMED ONE OF THE BEST BOOKS OF THE YEAR BY The New York Times Book Review • Times (UK) • Library Journal “Lovely . . . Johnson’s prose swirls with lyrical wonder, as varied and multihued as the apricot deserts, butterscotch skies and blue sunsets of Mars.”—Anthony Doerr, The New York Times Book Review Mars was once similar to Earth, but today there are no rivers, no lakes, no oceans. Coated in red dust, the terrain is bewilderingly empty. And yet multiple spacecraft are circling Mars, sweeping over Terra Sabaea, Syrtis Major, the dunes of Elysium, and Mare Sirenum—on the brink, perhaps, of a staggering find, one that would inspire humankind as much as any discovery in the history of modern science. In this beautifully observed, deeply personal book, Georgetown scientist Sarah Stewart Johnson tells the story of how she and other researchers have scoured Mars for signs of life, transforming the planet from a distant point of light into a world of its own. Johnson’s fascination with Mars began as a child in Kentucky, turning over rocks with her father and looking at planets in the night sky. She now conducts fieldwork in some of Earth’s most hostile environments, such as the Dry Valleys of Antarctica and the salt flats of Western Australia, developing methods for detecting life on other worlds. Here, with poetic precision, she interlaces her own personal journey—as a female scientist and a mother—with tales of other seekers, from Percival Lowell, who was convinced that a utopian society existed on Mars, to Audouin Dollfus, who tried to carry out astronomical observations from a stratospheric balloon. In the process, she shows how the story of Mars is also a story about Earth: This other world has been our mirror, our foil, a telltale reflection of our own anxieties and yearnings. Empathetic and evocative, The Sirens of Mars offers an unlikely natural history of a place where no human has ever set foot, while providing a vivid portrait of our quest to defy our isolation in the cosmos.
Optical Payloads for Space Missions is a comprehensive collection of optical spacecraft payloads with contributions by leading international rocket-scientists and instrument builders. Covers various applications, including earth observation, communications, navigation, weather, and science satellites and deep space exploration Each chapter covers one or more specific optical payload Contains a review chapter which provides readers with an overview on the background, current status, trends, and future prospects of the optical payloads Provides information on the principles of the optical spacecraft payloads, missions’ background, motivation and challenges, as well as the scientific returns, benefits and applications
Detailed description of the business lifecycle of customer projects Covers project execution lifecycle from a contractor perspective, commencing from business development to delivery handover Ensure contractual compliance Understand the dynamics of customer projects under contract from business development through handover Focus on delighting the customer with project deliverables
There are many books on computers, networks, and software engineering but none that integrate the three with applications. Integration is important because, increasingly, software dominates the performance, reliability, maintainability, and availability of complex computer and systems. Books on software engineering typically portray software as if it exists in a vacuum with no relationship to the wider system. This is wrong because a system is more than software. It is comprised of people, organizations, processes, hardware, and software. All of these components must be considered in an integrative fashion when designing systems. On the other hand, books on computers and networks do not demonstrate a deep understanding of the intricacies of developing software. In this book you will learn, for example, how to quantitatively analyze the performance, reliability, maintainability, and availability of computers, networks, and software in relation to the total system. Furthermore, you will learn how to evaluate and mitigate the risk of deploying integrated systems. You will learn how to apply many models dealing with the optimization of systems. Numerous quantitative examples are provided to help you understand and interpret model results. This book can be used as a first year graduate course in computer, network, and software engineering; as an on-the-job reference for computer, network, and software engineers; and as a reference for these disciplines.
This book introduces Software Quality Assurance (SQA) and provides an overview of standards used to implement SQA. It defines ways to assess the effectiveness of how one approaches software quality across key industry sectors such as telecommunications, transport, defense, and aerospace. Includes supplementary website with an instructor’s guide and solutions Applies IEEE software standards as well as the Capability Maturity Model Integration for Development (CMMI) Illustrates the application of software quality assurance practices through the use of practical examples, quotes from experts, and tips from the authors