Download Free Report Of The Environmental Protection Agencys Science Advisory Board Book in PDF and EPUB Free Download. You can read online Report Of The Environmental Protection Agencys Science Advisory Board and write the review.

This final report provides a review and synthesis of available scientific information concerning the relationship between hydraulic fracturing activities and drinking water resources in the United States. The report is organized around activities in the hydraulic fracturing water cycle and their potential to impact drinking water resources. The stages include: (1) acquiring water to be used for hydraulic fracturing (Water Acquisition), (2) mixing the water with chemical additives to prepare hydraulic fracturing fluids (Chemical Mixing), (3) injecting the hydraulic fracturing fluids into the production well to create fractures in the targeted production zone (Well Injection), (4) collecting the wastewater that returns through the well after injection (Produced Water Handling), and (5) managing the wastewater via disposal or reuse methods (Wastewater Disposal and Reuse). EPA found scientific evidence that hydraulic fracturing activities can impact drinking water resources under some circumstances. The report identifies certain conditions under which impacts from hydraulic fracturing activities can be more frequent or severe.
In anticipation of future environmental science and engineering challenges and technologic advances, EPA asked the National Research Council (NRC) to assess the overall capabilities of the agency to develop, obtain, and use the best available scientific and technologic information and tools to meet persistent, emerging, and future mission challenges and opportunities. Although the committee cannot predict with certainty what new environmental problems EPA will face in the next 10 years or more, it worked to identify some of the common drivers and common characteristics of problems that are likely to occur. Tensions inherent to the structure of EPA's work contribute to the current and persistent challenges faced by the agency, and meeting those challenges will require development of leading-edge scientific methods, tools, and technologies, and a more deliberate approach to systems thinking and interdisciplinary science. Science for Environmental Protection: The Road Ahead outlines a framework for building science for environmental protection in the 21st century and identified key areas where enhanced leadership and capacity can strengthen the agency's abilities to address current and emerging environmental challenges as well as take advantage of new tools and technologies to address them. The foundation of EPA science is strong, but the agency needs to continue to address numerous present and future challenges if it is to maintain its science leadership and meet its expanding mandates.
The public depends on competent risk assessment from the federal government and the scientific community to grapple with the threat of pollution. When risk reports turn out to be overblownâ€"or when risks are overlookedâ€"public skepticism abounds. This comprehensive and readable book explores how the U.S. Environmental Protection Agency (EPA) can improve its risk assessment practices, with a focus on implementation of the 1990 Clean Air Act Amendments. With a wealth of detailed information, pertinent examples, and revealing analysis, the volume explores the "default option" and other basic concepts. It offers two views of EPA operations: The first examines how EPA currently assesses exposure to hazardous air pollutants, evaluates the toxicity of a substance, and characterizes the risk to the public. The second, more holistic, view explores how EPA can improve in several critical areas of risk assessment by focusing on cross-cutting themes and incorporating more scientific judgment. This comprehensive volume will be important to the EPA and other agencies, risk managers, environmental advocates, scientists, faculty, students, and concerned individuals.
Sustainability is based on a simple and long-recognized factual premise: Everything that humans require for their survival and well-being depends, directly or indirectly, on the natural environment. The environment provides the air we breathe, the water we drink, and the food we eat. Recognizing the importance of sustainability to its work, the U.S. Environmental Protection Agency (EPA) has been working to create programs and applications in a variety of areas to better incorporate sustainability into decision-making at the agency. To further strengthen the scientific basis for sustainability as it applies to human health and environmental protection, the EPA asked the National Research Council (NRC) to provide a framework for incorporating sustainability into the EPA's principles and decision-making. This framework, Sustainability and the U.S. EPA, provides recommendations for a sustainability approach that both incorporates and goes beyond an approach based on assessing and managing the risks posed by pollutants that has largely shaped environmental policy since the 1980s. Although risk-based methods have led to many successes and remain important tools, the report concludes that they are not adequate to address many of the complex problems that put current and future generations at risk, such as depletion of natural resources, climate change, and loss of biodiversity. Moreover, sophisticated tools are increasingly available to address cross-cutting, complex, and challenging issues that go beyond risk management. The report recommends that EPA formally adopt as its sustainability paradigm the widely used "three pillars" approach, which means considering the environmental, social, and economic impacts of an action or decision. Health should be expressly included in the "social" pillar. EPA should also articulate its vision for sustainability and develop a set of sustainability principles that would underlie all agency policies and programs.
Risk assessment has become a dominant public policy tool for making choices, based on limited resources, to protect public health and the environment. It has been instrumental to the mission of the U.S. Environmental Protection Agency (EPA) as well as other federal agencies in evaluating public health concerns, informing regulatory and technological decisions, prioritizing research needs and funding, and in developing approaches for cost-benefit analysis. However, risk assessment is at a crossroads. Despite advances in the field, risk assessment faces a number of significant challenges including lengthy delays in making complex decisions; lack of data leading to significant uncertainty in risk assessments; and many chemicals in the marketplace that have not been evaluated and emerging agents requiring assessment. Science and Decisions makes practical scientific and technical recommendations to address these challenges. This book is a complement to the widely used 1983 National Academies book, Risk Assessment in the Federal Government (also known as the Red Book). The earlier book established a framework for the concepts and conduct of risk assessment that has been adopted by numerous expert committees, regulatory agencies, and public health institutions. The new book embeds these concepts within a broader framework for risk-based decision-making. Together, these are essential references for those working in the regulatory and public health fields.
Project economic analysis is a tool used by the Asian Development Bank (ADB) to ensure that ADB operations comply with its Charter. The guidelines in this publication are a revised version of the 1997 edition. The revision responds to the changing development context and ADB operational priorities, and aims to address the recommendations of the ADB Quality-at-Entry Assessments for more methodological work on project economic analysis. The revised guidelines provide general principles for the conduct of project economic analysis, and should be read together with handbooks, technical reports, and other reference materials published by ADB dealing with sector-specific project economic analysis in detail.
Chemical Assessments: Low Productivity and New Interagency Review Process Limit the Usefulness and Credibility of EPA's Integrated Risk Information System
Though overall cancer incidence and mortality have continued to decline in recent years, cancer continues to devastate the lives of far too many Americans. In 2009 alone, 1.5 million American men, women, and children were diagnosed with cancer, and 562,000 died from the disease. There is a growing body of evidence linking environmental exposures to cancer. The Pres. Cancer Panel dedicated its 2008¿2009 activities to examining the impact of environmental factors on cancer risk. The Panel considered industrial, occupational, and agricultural exposures as well as exposures related to medical practice, military activities, modern lifestyles, and natural sources. This report presents the Panel¿s recommend. to mitigate or eliminate these barriers. Illus.
Trichloroethylene is a chlorinated solvent widely used as a degreasing agent in industrial and manufacturing settings. It is also used as a chemical intermediate in making other chemicals and is a component of products such as typewriter correction fluid, paint removers, adhesives, and spot removers. In 2001, EPA issued a draft health risk assessment and proposed exposure standards for trichloroethylene. PA's Scientific Advisory Board (SAB) reviewed the draft and it was issued for public comment. A number of scientific issues were raised during the course of these reviews. Assessing the Human Health Risks of Trichloroethylene identifies and assesses the key scientific issues relevant to analyzing the human health risks of trichloroethylene, considering pertinent toxicologic, epidemiologic, population susceptibility, and other available information, including relevant published scientific literature, EPA's 2001 draft health risk assessment of trichloroethylene, scientific and technical comments received by EPA from public and private sources, and additional relevant information to be provided by the sponsoring agencies. This report highlights issues critical to the development of an objective, realistic, and scientifically balanced trichloroethylene health risk assessment. Guidance for hazard characterization of trichloroethylene is presented in Chapters 2 through 10. Chapter 2 provides guidance for evaluating large sets of epidemiologic data. In Chapter 3, the committee applies this guidance as an example in its evaluation of the epidemiologic data on trichloroethylene and kidney cancer, and this example should help guide evaluations of other cancer risks. Chapter 3 also assesses new information on the kidney toxicity of trichloroethylene and its metabolites and potential modes of action. Chapters 4, 5, 6, 7, and 8 evaluate the key issues regarding liver toxicity and cancer, reproductive and developmental toxicity, neurotoxicity, respiratory tract toxicity and cancer, and immunotoxicity, respectively. However, the committee's review focused on mode-of-action information to understand how trichloroethylene might affect certain processes differently in different species. Chapter 9 discusses susceptibility to trichloroethylene and its metabolites, and Chapter 10 describes important factors in considering trichloroethylene in mixtures. Physiologically based pharmacokinetic models are evaluated in Chapter 11, and guidance is provided on future directions for model development. Finally, Chapter 12 considers issues related to dose-response assessment and quantitative assessment of risk.