Download Free Repetitive Dna Sequences Book in PDF and EPUB Free Download. You can read online Repetitive Dna Sequences and write the review.

Repetitive DNA is ubiquitous in eukaryotic genomes, and, in many species, comprises the bulk of the genome. Repeats include transposable elements that can self-mobilize and disperse around the genome, and tandemly-repeated satellite DNAs that increase in copy number due to replication slippage and unequal crossing over. Despite their abundance, repetitive DNA is often ignored in genomic studies due to technical challenges in their identification, assembly, and quantification. New technologies and methods are now providing the unprecedented power to analyze repetitive DNAs across diverse taxa. Repetitive DNA is of particular interest because it can represent distinct modes of genome evolution. Some repetitive DNA forms essential genome structures, such as telomeres and centromeres, which are required for proper chromosome maintenance and segregation, whereas others form piRNA clusters that regulate transposable elements; thus, these elements are expected to evolve under purifying selection. In contrast, other repeats evolve selfishly and produce genetic conflicts with their host species that drive adaptive evolution of host defense systems. However, the majority of repeats likely accumulate in eukaryotes in the absence of selection due to mechanisms of transposition and unequal crossing over. Even these neutral repeats may indirectly influence genome evolution as they reach high abundance. In this Special Issue, the contributing authors explore these questions from a range of perspectives.
The experimental data that have been generated using new molecular techniques associated with the completion of genome projects have changed our perception of the structural features, functional implications and evolutionary dynamics of repetitive DNA sequences. This volume of Genome Dynamics provides a valuable update on recent developments in research into multigene families, centromeres, telomeres, microsatellite DNA, satellite DNA, and transposable elements. Each chapter presents a review by distinguished experts and analyzes repetitive DNA diversity and abundance, as well as the impact on genome structure, function and evolution. This publication is targeted at scientists and scholars at every level, from students to faculty members, and, indeed, anyone involved or interested in genetics, molecular evolution, molecular biology as well as genomics will find it a valuable source of up-to-date information.
Repetitive DNA is ubiquitous in eukaryotic genomes, and, in many species, comprises the bulk of the genome. Repeats include transposable elements that can self-mobilize and disperse around the genome, and tandemly-repeated satellite DNAs that increase in copy number due to replication slippage and unequal crossing over. Despite their abundance, repetitive DNA is often ignored in genomic studies due to technical challenges in their identification, assembly, and quantification. New technologies and methods are now providing the unprecedented power to analyze repetitive DNAs across diverse taxa. Repetitive DNA is of particular interest because it can represent distinct modes of genome evolution. Some repetitive DNA forms essential genome structures, such as telomeres and centromeres, which are required for proper chromosome maintenance and segregation, whereas others form piRNA clusters that regulate transposable elements; thus, these elements are expected to evolve under purifying selection. In contrast, other repeats evolve selfishly and produce genetic conflicts with their host species that drive adaptive evolution of host defense systems. However, the majority of repeats likely accumulate in eukaryotes in the absence of selection due to mechanisms of transposition and unequal crossing over. Even these neutral repeats may indirectly influence genome evolution as they reach high abundance. In this Special Issue, the contributing authors explore these questions from a range of perspectives.
The genome of a living being is composed of DNA sequences with diverse origins. Beyond single-copy genes, whose product has a biological function that can be inferred by experimentation, certain DNA sequences, present in a large number of copies, escape the most refined approaches aimed at elucidating their precise role. The existence of what 20th century geneticists had already perceived (and wrongly described as "junk DNA"!) was confirmed by the sequencing of the first complex genomes, including that of Homo sapiens. A large part of what defines a living thing is not unique, but repeated, sometimes a very large number of times, increasing in complexity with successive duplications and multiplication. Understanding and defining the many functions of this myriad of repeated sequences, as well as their evolution through natural selection, has become one of the major challenges for 21st century genomics.
Overview and Goals This book describes how to visualize and compare bacterial genomes. Sequencing technologies are becoming so inexpensive that soon going for a cup of coffee will be more expensive than sequencing a bacterial genome. Thus, there is a very real and pressing need for high-throughput computational methods to compare hundreds and thousands of bacterial genomes. It is a long road from molecular biology to systems biology, and in a sense this text can be thought of as a path bridging these ? elds. The goal of this book is to p- vide a coherent set of tools and a methodological framework for starting with raw DNA sequences and producing fully annotated genome sequences, and then using these to build up and test models about groups of interacting organisms within an environment or ecological niche. Organization and Features The text is divided into four main parts: Introduction, Comparative Genomics, Transcriptomics and Proteomics, and ? nally Microbial Communities. The ? rst ? ve chapters are introductions of various sorts. Each of these chapters represents an introduction to a speci? c scienti? c ? eld, to bring all readers up to the same basic level before proceeding on to the methods of comparing genomes. First, a brief overview of molecular biology and of the concept of sequences as biological inf- mation are given.
'The material included in Heterochromatin is impressively comprehensive and provides timely, authoritative information that would otherwise be difficult to obtain.' BioScience
A wide range of microbiologists, molecular biologists, and molecular evolutionary biologists will find this new volume of singular interest. It summarizes the present knowledge about the structure and stability of microbial genomes, and reviews the techniques used to analyze and fingerprint them. Maps of approximately thirty important microbes, along with articles on the construction and relevant features of the maps are included. The volume is not intended as a complete compendium of all information on microbial genomes, but rather focuses on approaches, methods and good examples of the analysis of small genomes.
This book addresses the role of tandem repeat polymorphisms (TRPs) in genetic plasticity, evolution, development, biological processes, neural diversity, brain function, dysfunction and disease. There are hundreds of thousands of unique tandem repeats in the human genome and their polymorphic distributions have the potential to greatly influence functional diversity and disease susceptibility. Recent discoveries in this expanding field are critically reviewed and discussed in a range of subsequent chapters, with a focus on the role of TRPs and their various gene products in evolution, development, diverse molecular and cellular processes, brain function and disease.
Taxonomy is fundamental to understanding the variety of life forms, and exciting expansions in molecular biology are re- volutionising the obtained data. This volume reviews the ma- jor molecular biological techniques that are applied in ta- xonomy. The chapters are arranged in three main sections:1) Overviews of important topics in molecular taxonomy; 2) Case studies of the successful application of molecular methods to taxonomic and evolutionary questions; 3) Protocols for a range of generally applicable methods. The described techni- ques include DNA-DNA hybridization, DNA fingerprinting, RFLP analysis, and PCR sequencing.