Download Free Renewing Us Mathematics Book in PDF and EPUB Free Download. You can read online Renewing Us Mathematics and write the review.

As requested by the National Science Foundation (NSF) and the Interagency Committee for Extramural Mathematics Programs (ICEMAP), this report updates the 1984 Report known as the "David Report." Specifically, the charge directed the committee to (1) update that report, describing the infrastructure and support for U.S. mathematical sciences research; (2) assess trends and progress over the intervening five years against the recommendations of the 1984 Report; (3) briefly assess the field scientifically and identify significant opportunities for research, including cross-disciplinary collaboration; and (4) make appropriate recommendations designed to ensure that U.S. mathematical sciences research will meet national needs in coming years. Of the several components of the mathematical sciences community requiring action, its wellspring--university research departments--is the primary focus of this report. The progress and promise of research--described in the 1984 Report relative to theoretical development, new applications, and the refining and deepening of old applications--have if anything increased since 1984, making mathematics research ever more valuable to other sciences and technology. Although some progress has been made since 1984 in the support for mathematical sciences research, the goals set in the 1984 Report have not been achieved. Practically all of the increase in funding has gone into building the infractructure, which had deteriorated badly by 1984. While graduate and postdoctoral research, computer facilities, and new institutes have benefited from increased resources, some of these areas are still undersupported by the standards of other sciences. And in the area of research support for individual investigators, almost no progress has been made. A critical storage of qualified mathematical sciences researchers still looms, held at bay for the moment by a large influx of foreign researchers, an uncertain solution in the longer term. While government has responded substantially to the 1984 Report's recommendations, particularly in the support of infrastructure, the universities generally have not, so that the academic foundations of the mathematical sciences research enterprise are as shaky now as in 1984. The greatet progress has been made in the mathematics sciences community, whose members have shown a growing awareness of the problems confronting their discipline and increased interest in dealing with the problems, particularly in regard to communication with the public and government agencies and involvement in education. (AA)
As requested by the National Science Foundation (NSF) and the Interagency Committee for Extramural Mathematics Programs (ICEMAP), this report updates the 1984 Report known as the "David Report." Specifically, the charge directed the committee to (1) update that report, describing the infrastructure and support for U.S. mathematical sciences research; (2) assess trends and progress over the intervening five years against the recommendations of the 1984 Report; (3) briefly assess the field scientifically and identify significant opportunities for research, including cross-disciplinary collaboration; and (4) make appropriate recommendations designed to ensure that U.S. mathematical sciences research will meet national needs in coming years. Of the several components of the mathematical sciences community requiring action, its wellspring--university research departments--is the primary focus of this report. The progress and promise of research--described in the 1984 Report relative to theoretical development, new applications, and the refining and deepening of old applications--have if anything increased since 1984, making mathematics research ever more valuable to other sciences and technology. Although some progress has been made since 1984 in the support for mathematical sciences research, the goals set in the 1984 Report have not been achieved. Practically all of the increase in funding has gone into building the infractructure, which had deteriorated badly by 1984. While graduate and postdoctoral research, computer facilities, and new institutes have benefited from increased resources, some of these areas are still undersupported by the standards of other sciences. And in the area of research support for individual investigators, almost no progress has been made. A critical storage of qualified mathematical sciences researchers still looms, held at bay for the moment by a large influx of foreign researchers, an uncertain solution in the longer term. While government has responded substantially to the 1984 Report's recommendations, particularly in the support of infrastructure, the universities generally have not, so that the academic foundations of the mathematical sciences research enterprise are as shaky now as in 1984. The greatet progress has been made in the mathematics sciences community, whose members have shown a growing awareness of the problems confronting their discipline and increased interest in dealing with the problems, particularly in regard to communication with the public and government agencies and involvement in education. (AA)
Over three hundred years ago, Galileo is reported to have said, "The laws of nature are written in the language of mathematics." Often mathematics and science go hand in hand, with one helping develop and improve the other. Discoveries in science, for example, open up new advances in statistics, computer science, operations research, and pure and applied mathematics which in turn enabled new practical technologies and advanced entirely new frontiers of science. Despite the interdependency that exists between these two disciplines, cooperation and collaboration between mathematical scientists and scientists have only occurred by chance. To encourage new collaboration between the mathematical sciences and other fields and to sustain present collaboration, the National Research Council (NRC) formed a committee representing a broad cross-section of scientists from academia, federal government laboratories, and industry. The goal of the committee was to examine the mechanisms for strengthening interdisciplinary research between mathematical sciences and the sciences, with a strong focus on suggesting the most effective mechanisms of collaboration. Strengthening the Linkages Between the Sciences and the Mathematical Sciences provides the findings and recommendations of the committee as well as case studies of cross-discipline collaboration, the workshop agenda, and federal agencies that provide funding for such collaboration.
In 1998, the National Science Foundation (NSF) launched a program of Grants for Vertical Integration of Research and Education in the Mathematical Sciences (VIGRE). These grants were designed for institutions with PhD-granting departments in the mathematical sciences, for the purpose of developing high-quality education programs, at all levels, that are vertically integrated with the research activities of these departments. To date, more than 50 departments at 40 institutions have received VIGRE awards. As requested by NSF, the present volume reviews the goals of the VIGRE program and evaluates how well the program is designed to address those goals. The book considers past and current practices for assessing the VIGRE program; draws tentative conclusions about the program's achievements based on the data collected to date; and evaluates NSF's plans for future data-driven assessments. In addition, critical policy and programmatic changes for the program are identified, with recommendations for how to address these changes.
The papers arising from the ICMI study seminar on the popularization of mathematics held at the University of Leeds, UK, 17-22 September 1989.