Download Free Renewable Hydrocarbons From Triglycerides Thermal Cracking Book in PDF and EPUB Free Download. You can read online Renewable Hydrocarbons From Triglycerides Thermal Cracking and write the review.

Frontiers in Bioenergy and Biofuels presents an authoritative and comprehensive overview of the possibilities for production and use of bioenergy, biofuels, and coproducts. Issues related to environment, food, and energy present serious challenges to the success and stability of nations. The challenge to provide energy to a rapidly increasing global population has made it imperative to find new technological routes to increase production of energy while also considering the biosphere's ability to regenerate resources. The bioenergy and biofuels are resources that may provide solutions to these critical challenges. Divided into 25 discreet parts, the book covers topics on characterization, production, and uses of bioenergy, biofuels, and coproducts. Frontiers in Bioenergy and Biofuels provides an insight into future developments in each field and extensive bibliography. It will be an essential resource for researchers and academic and industry professionals in the energy field.
HANDBOOK of BIOMASS VALORIZATION for INDUSTRIAL APPLICATIONS The handbook provides a comprehensive view of cutting-edge research on biomass valorization, from advanced fabrication methodologies through useful derived materials, to current and potential application sectors. Industrial sectors, such as food, textiles, petrochemicals and pharmaceuticals, generate massive amounts of waste each year, the disposal of which has become a major issue worldwide. As a result, implementing a circular economy that employs sustainable practices in waste management is critical for any industry. Moreover, fossil fuels, which are the primary sources of fuel in the transportation sector, are also being rapidly depleted at an alarming rate. Therefore, to combat these global issues without increasing our carbon footprint, we must look for renewable resources to produce chemicals and biomaterials. In that context, agricultural waste materials are gaining popularity as cost-effective and abundantly available alternatives to fossil resources for the production of a variety of value-added products, including renewable fuels, fuel components, and fuel additives. Handbook of Biomass Valorization for Industrial Applications investigates current and emerging feedstocks, as well as provides in-depth technical information on advanced catalytic processes and technologies that enable the development of all possible alternative energy sources. The 22 chapters of this book comprehensively cover the valorization of agricultural wastes and their various uses in value-added applications like energy, biofuels, fertilizers, and wastewater treatment. Audience The book is intended for a very broad audience working in the fields of materials sciences, chemical engineering, nanotechnology, energy, environment, chemistry, etc. This book will be an invaluable reference source for the libraries in universities and industrial institutions, government and independent institutes, individual research groups, and scientists working in the field of valorization of biomass.
Zeolites occur in nature and have been known for almost 250 years as alumino silicate minerals. Examples are clinoptilolite, mordenite, offretite, ferrierite, erionite and chabazite. Today, most of these and many other zeolites are of great interest in heterogeneous catalysis, yet their naturally occurring forms are of limited value as catalysts because nature has not optimized their properties for catalytic applications and the naturally occurring zeolites almost always contain undesired impurity phases. It was only with the advent of synthetic zeolites in the period from about 1948 to 1959 (thanks to the pioneering work of R. M. Barrer and R. M. Milton) that this class of porous materials began to playa role in catalysis. A landmark event was the introduction of synthetic faujasites (zeolite X at first, zeolite Y slightly later) as catalysts in fluid catalytic cracking (FCC) of heavy petroleum distillates in 1962, one of the most important chemical processes with a worldwide capacity of the order of 500 million t/a. Compared to the previously used amorphous silica-alumina catalysts, the zeolites were not only orders of magnitude more active, which enabled drastic process engineering improvements to be made, but they also brought about a significant increase in the yield of the target product, viz. motor gasoline. With the huge FCC capacity worldwide, the added value of this yield enhancement is of the order of 10 billion US $ per year.
Fundamentals of Petroleum Refining presents the fundamentals of thermodynamics and kinetics, and it explains the scientific background essential for understanding refinery operations. The text also provides a detailed introduction to refinery engineering topics, ranging from the basic principles and unit operations to overall refinery economics. The book covers important topics, such as clean fuels, gasification, biofuels, and environmental impact of refining, which are not commonly discussed in most refinery textbooks. Throughout the source, problem sets and examples are given to help the reader practice and apply the fundamental principles of refining. Chapters 1-10 can be used as core materials for teaching undergraduate courses. The first two chapters present an introduction to the petroleum refining industry and then focus on feedstocks and products. Thermophysical properties of crude oils and petroleum fractions, including processes of atmospheric and vacuum distillations, are discussed in Chapters 3 and 4. Conversion processes, product blending, and alkylation are covered in chapters 5-10. The remaining chapters discuss hydrogen production, clean fuel production, refining economics and safety, acid gas treatment and removal, and methods for environmental and effluent treatments. This source can serve both professionals and students (on undergraduate and graduate levels) of Chemical and Petroleum Engineering, Chemistry, and Chemical Technology. Beginners in the engineering field, specifically in the oil and gas industry, may also find this book invaluable. - Provides balanced coverage of fundamental and operational topics - Includes spreadsheets and process simulators for showing trends and simulation case studies - Relates processing to planning and management to give an integrated picture of refining
A comprehensive reference to the use of innovative catalysts and processes to turn biomass into value-added chemicals Chemical Catalysts for Biomass Upgrading offers detailed descriptions of catalysts and catalytic processes employed in the synthesis of chemicals and fuels from the most abundant and important biomass types. The contributors?noted experts on the topic?focus on the application of catalysts to the pyrolysis of whole biomass and to the upgrading of bio-oils. The authors discuss catalytic approaches to the processing of biomass-derived oxygenates, as exemplified by sugars, via reactions such as reforming, hydrogenation, oxidation, and condensation reactions. Additionally, the book provides an overview of catalysts for lignin valorization via oxidative and reductive methods and considers the conversion of fats and oils to fuels and terminal olefins by means of esterification/transesterification, hydrodeoxygenation, and decarboxylation/decarbonylation processes. The authors also provide an overview of conversion processes based on terpenes and chitin, two emerging feedstocks with a rich chemistry, and summarize some of the emerging trends in the field. This important book: -Provides a comprehensive review of innovative catalysts, catalytic processes, and catalyst design -Offers a guide to one of the most promising ways to find useful alternatives for fossil fuel resources -Includes information on the most abundant and important types of biomass feedstocks -Examines fields such as catalytic cracking, pyrolysis, depolymerization, and many more Written for catalytic chemists, process engineers, environmental chemists, bioengineers, organic chemists, and polymer chemists, Chemical Catalysts for Biomass Upgrading presents deep insights on the most important aspects of biomass upgrading and their various types.
Accessible references for researchers and industrialists in this exciting field, covering both developments and applications of catalysis.
This book covers the entire spectrum of green diesel and their applications in existing CI engines. This book discusses how a green diesel is a better fuel than biodiesel and petrodiesel and more suitable fuels for sustainable future development. The book begins with a concise overview of the fundamentals of the green diesel properties, preparation, and characterization of green diesel using hydroprocessing technology. The book covers recent developments in the domain of green diesel derived particularly from the second-/third-generation feedstocks. Various topics covered in this book include the catalysts involved in the processing of green diesel, characterization of the products as per ASTM/EN protocols. In addition, the book also illustrates characteristic features of green diesel and how it is different from biodiesel and petrodiesel. Other chapters cover performance and emission characteristics of green diesel in CI engines and techno-economic analysis. Moreover, the current status of green diesel industries is also incorporated. This book is of particular interest to graduate students and academic or industrial researchers/professionals working in the area of green diesel/green energy, bioenergy and mechanical, automobile, and chemical engineering. This book makes a forceful foundation for the establishment of green diesel refineries/biorefineries for a sustainable, cleaner, and greener future.
Lubricants are essential in engineering, however more sustainable formulations are needed to avoid adverse effects on the ecosystem. Bio-based lubricant formulations present a promising solution. Biolubricants: Science and technology is a comprehensive, interdisciplinary and timely review of this important subject.Initial chapters address the principles of lubrication, before systematically reviewing fossil and bio-based feedstock resources for biodegradable lubricants. Further chapters describe catalytic, (bio) chemical functionalisation processes for transformation of feedstocks into commercial products, product development, relevant legislation, life cycle assessment, major product groups and specific performance criteria in all major applications. Final chapters consider markets for biolubricants, issues to consider when selecting and using a lubricant, lubricant disposal and future trends.With its distinguished authors, Biolubricants: Science and technology is a comprehensive reference for an industrial audience of oil formulators and lubrication engineers, as well as researchers and academics with an interest in the subject. It provides an essential overview of scientific and technological developments enabling the cost-effective improvement of biolubricants, something that is crucial for the green future of the lubricant industry. - A comprehensive, interdisciplinary and timely review of bio-based lubricant formulations - Addresses the principles of lubrication - Reviews fossil and bio-based feedstock resources for biodegradable lubricants
Fischer-Tropsch Technology is a unique book for its state-of-the-art approach to Fischer Tropsch (FT) technology. This book provides an explanation of the basic principles and terminology that are required to understand the application of FT technology. It also contains comprehensive references to patents and previous publications. As the first publication to focus on theory and application, it is a contemporary reference source for students studying chemistry and chemical engineering. Researchers and engineers active in the development of FT technology will also find this book an invaluable source of information. * Is the first publication to cover the theory and application for modern Fischer Tropsch technology * Contains comprehensive knowledge on all aspects relevant to the application of Fischer Tropsch technology* No other publication looks at past, present and future applications
During the upgrading of heavy petroleum, asphaltene is the most problematic impurity since it is the main cause of catalyst deactivation and sediments formation. Exploring many aspects related to asphaltenes composition and conversion, Asphaltenes: Chemical Transformation during Hydroprocessing of Heavy Oils highlights the various changes that thes