Download Free Renewable Energy Integration With Building Energy Systems Book in PDF and EPUB Free Download. You can read online Renewable Energy Integration With Building Energy Systems and write the review.

This handbook provides a comprehensive summary on the energy systems used in green buildings, with a particular focus on solar energy - the most common renewable energy source applied in this field. With the growing concern about environmental protections, the concepts of green building have been widely promoted and implemented in nowadays building designs and constructions. Among all, sustainable energy systems, including energy harvesting, conversion, and storage, is one of most important design factors in green buildings. Unlike traditional energy systems which highly rely on fossil fuel, green buildings utilize renewable energy source or high efficient energy systems, or both, to provide environmental friendly, low carbon waste energy. The most updated concepts, designs, technologies developed and implemented in heat pumps, cooling systems, power systems, and energy storage will be discussed here in details. This handbook is subdivided into 7-9 main sections to provide an in-depth discussion from foundational principles to practical techniques. In addition, different cases about green energy systems implemented in global will be discussed. The book will be structured easy-to-read, to make it more accessible to graduate students and professionals in diverse scientific and engineering communities, including applied physics, civil engineering, electrical engineering, mechanical engineering, material engineering, and chemical engineering.
Renewable Energy Integration is a ground-breaking new resource - the first to offer a distilled examination of the intricacies of integrating renewables into the power grid and electricity markets. It offers informed perspectives from internationally renowned experts on the challenges to be met and solutions based on demonstrated best practices developed by operators around the world. The book's focus on practical implementation of strategies provides real-world context for theoretical underpinnings and the development of supporting policy frameworks. The book considers a myriad of wind, solar, wave and tidal integration issues, thus ensuring that grid operators with low or high penetration of renewable generation can leverage the victories achieved by their peers. Renewable Energy Integration highlights, carefully explains, and illustrates the benefits of advanced technologies and systems for coping with variability, uncertainty, and flexibility. - Lays out the key issues around the integration of renewables into power grids and markets, from the intricacies of operational and planning considerations, to supporting regulatory and policy frameworks - Provides global case studies that highlight the challenges of renewables integration and present field-tested solutions - Illustrates enabling and disruptive technologies to support the management of variability, uncertainty and flexibility
As perhaps the most promising of all the renewable energy sources available today, solar energy is becoming increasingly important in the drive to achieve energy independence and climate balance. This new book is the masterwork from world-renowned expert Dr. Soteris Kalogirou, who has championed solar energy for decades. The book includes all areas of solar energy engineering, from the fundamentals to the highest level of current research. The author includes pivotal subjects such as solar collectors, solar water heating, solar space heating and cooling, industrial process heat, solar desalination, photovoltaics, solar thermal power systems, and modeling of solar systems, including the use of artificial intelligence systems in solar energy systems, modeling and performance prediction. *Written by one of the world's most renowned experts in solar energy*Covers the hottest new developments in solar technology, such as solar cooling and desalination*Packed with quick look up tables and schematic diagrams for the most commonly used systems today'
Construction, as an industry sector, is responsible for around one-third of the total worldwide energy usage and about 20% of greenhouse gas emissions. The rise in the number of buildings and floor space area for residential and commercial purposes has imposed enormous pressure on existing energy sources. Implementations such as efficient usage of building energy systems, design measures, utilization of local energy resources, energy storage, and the use of renewable energy sources to meet electricity demands are currently under development and deployment for improving the energy performance index. However, integrating all such measures and the development of nearly zero-energy and zero-emission buildings is yet to be explored. In this book, the different control techniques and intelligent technologies used to improve the energy performance of buildings are illustrated. Every building energy control system has a two-fold objective for energy and comfort requirements to achieve a high comfort index (for thermal, visual, air quality, humidity, and various plug loads) and increase the energy performance index. The most significant aspect in the design of a building’s energy control system is modelling. All the components, methodologies, and processes involved in developing a renewable energy-driven building are covered in detail. This book is intended for graduates and professionals working towards the development of a sustainable built environment using renewable energy sources.
The energy transition is one of the key approaches in the effort to halt climate changes, and it has become even more essential in the light of the recent COVID-19 pandemic. Fostering the energy efficiency and the energy independence of the building sector is a focal aim to move towards a decarbonized society. In this context, building physics and building energy systems are fundamental disciplines based on applied physics applications in civil, architectural, and environmental engineering, including technical themes related to the planning of energy and the environment, diagnostic methods, and mitigating techniques. This Special Issue contains information on experimental studies in the following research topics: renewable energy sources, building energy analysis, rational use of energy, heat transmission, heating and cooling systems, thermofluid dynamics, smart energy systems, and energy service management in buildings.
In this ready reference, top academic researchers, industry players and government officers join forces to develop commercial concepts for the transition from current nuclear or fossil fuel-based energy to renewable energy systems within a limited time span. They take into account the latest science and technology, including an analysis of the feasibility and impact on the environment, economy and society. In so doing, they discuss such complex topics as electrical and gas grids, fossil power plants and energy storage technologies. The contributions also include robust, conceivable and breakthrough technologies that will be viable and implementable by 2020.
Optimization in Renewable Energy Systems: Recent Perspectives covers all major areas where optimization techniques have been applied to reduce uncertainty or improve results in renewable energy systems (RES). Production of power with RES is highly variable and unpredictable, leading to the need for optimization-based planning and operation in order to maximize economies while sustaining performance. This self-contained book begins with an introduction to optimization, then covers a wide range of applications in both large and small scale operations, including optimum operation of electric power systems with large penetration of RES, power forecasting, transmission system planning, and DG sizing and siting for distribution and end-user premises. This book is an excellent choice for energy engineers, researchers, system operators, system regulators, and graduate students. - Provides chapters written by experts in the field - Goes beyond forecasting to apply optimization techniques to a wide variety of renewable energy system issues, from large scale to relatively small scale systems - Provides accompanying computer code for related chapters
Design and Performance Optimization of Renewable Energy Systems provides an integrated discussion of issues relating to renewable energy performance design and optimization using advanced thermodynamic analysis with modern methods to configure major renewable energy plant configurations (solar, geothermal, wind, hydro, PV). Vectors of performance enhancement reviewed include thermodynamics, heat transfer, exergoeconomics and neural network techniques. Source technologies studied range across geothermal power plants, hydroelectric power, solar power towers, linear concentrating PV, parabolic trough solar collectors, grid-tied hybrid solar PV/Fuel cell for freshwater production, and wind energy systems. Finally, nanofluids in renewable energy systems are reviewed and discussed from the heat transfer enhancement perspective. - Reviews the fundamentals of thermodynamics and heat transfer concepts to help engineers overcome design challenges for performance maximization - Explores advanced design and operating principles for solar, geothermal and wind energy systems with diagrams and examples - Combines detailed mathematical modeling with relevant computational analyses, focusing on novel techniques such as artificial neural network analyses - Demonstrates how to maximize overall system performance by achieving synergies in equipment and component efficiency
This book presents comprehensive coverage of the means to integrate renewable power, namely wind and solar power. It looks at new approaches to meet the challenges, such as increasing interconnection capacity among geographical areas, hybridisation of different distributed energy resources and building up demand response capabilities.