Download Free Rendiconti Del Seminario Matematico Della Universita Di Padova Book in PDF and EPUB Free Download. You can read online Rendiconti Del Seminario Matematico Della Universita Di Padova and write the review.

Pierre Grisvard, one of the most distinguished French mathematicians, died on April 22, 1994. A Conference was held in November 1994 out of which grew the invited articles contained in this volume. All of the papers are related to functional analysis applied to partial differential equations, which was Grisvard's specialty. Indeed his knowledge of this area was extremely broad. He began his career as one of the very first students of Jacques Louis Lions, and in 1965, he presented his "State Thesis" on interpolation spaces, using in particular, spectral theory for linear operators in Banach spaces. After 1970, he became a specialist in the study of optimal regularity for par tial differential equations with boundary conditions. He studied singulari ties coming from coefficients, boundary conditions, and mainly non-smooth domains, and left a legacy of precise results which have been published in journals and books. Pierre Grisvard spent most of his career as a full professor at the University of Nice, where he started in 1967. For shorter or longer periods, he visited several foreign countries, and collaborated with some of the most famous mathematicians in his field. He was also an excellent organizer and directed a large number of Ph.D. students. Finally, this volume contains a bibliography of Grisvard's works as well as one paper which he wrote and which has not been published before.
This graduate textbook provides a self-contained introduction to the classical theory of partial differential equations (PDEs). Through its careful selection of topics and engaging tone, readers will also learn how PDEs connect to cutting-edge research and the modeling of physical phenomena. The scope of the Third Edition greatly expands on that of the previous editions by including five new chapters covering additional PDE topics relevant for current areas of active research. This includes coverage of linear parabolic equations with measurable coefficients, parabolic DeGiorgi classes, Navier-Stokes equations, and more. The “Problems and Complements” sections have also been updated to feature new exercises, examples, and hints toward solutions, making this a timely resource for students. Partial Differential Equations: Third Edition is ideal for graduate students interested in exploring the theory of PDEs and how they connect to contemporary research. It can also serve as a useful tool for more experienced readers who are looking for a comprehensive reference.
This book presents English translations of Michele Sce’s most important works, originally written in Italian during the period 1955-1973, on hypercomplex analysis and algebras of hypercomplex numbers. Despite their importance, these works are not very well known in the mathematics community because of the language they were published in. Possibly the most remarkable instance is the so-called Fueter-Sce mapping theorem, which is a cornerstone of modern hypercomplex analysis, and is not yet understood in its full generality. This volume is dedicated to revealing and describing the framework Sce worked in, at an exciting time when the various generalizations of complex analysis in one variable were still in their infancy. In addition to faithfully translating Sce’s papers, the authors discuss their significance and explain their connections to contemporary research in hypercomplex analysis. They also discuss many concrete examples that can serve as a basis for further research. The vast majority of the results presented here will be new to readers, allowing them to finally access the original sources with the benefit of comments from fellow mathematicians active in the field of hypercomplex analysis. As such, the book offers not only an important chapter in the history of hypercomplex analysis, but also a roadmap for further exciting research in the field.
The purpose of this book is to build the fundament of an Arakelov theory over adelic curves in order to provide a unified framework for research on arithmetic geometry in several directions. By adelic curve is meant a field equipped with a family of absolute values parametrized by a measure space, such that the logarithmic absolute value of each non-zero element of the field is an integrable function on the measure space. In the literature, such construction has been discussed in various settings which are apparently transversal to each other. The authors first formalize the notion of adelic curves and discuss in a systematic way its algebraic covers, which are important in the study of height theory of algebraic points beyond Weil–Lang’s height theory. They then establish a theory of adelic vector bundles on adelic curves, which considerably generalizes the classic geometry of vector bundles or that of Hermitian vector bundles over an arithmetic curve. They focus on an analogue of the slope theory in the setting of adelic curves and in particular estimate the minimal slope of tensor product adelic vector bundles. Finally, by using the adelic vector bundles as a tool, a birational Arakelov geometry for projective variety over an adelic curve is developed. As an application, a vast generalization of Nakai–Moishezon’s criterion of positivity is proven in clarifying the arguments of geometric nature from several fundamental results in the classic geometry of numbers. Assuming basic knowledge of algebraic geometry and algebraic number theory, the book is almost self-contained. It is suitable for researchers in arithmetic geometry as well as graduate students focusing on these topics for their doctoral theses.
This edited volume presents state-of-the-art developments in various areas in which Harmonic Analysis is applied. Contributions cover a variety of different topics and problems treated such as structure and optimization in computational harmonic analysis, sampling and approximation in shift invariant subspaces of L2(R), optimal rank one matrix decomposition, the Riemann Hypothesis, large sets avoiding rough patterns, Hardy Littlewood series, Navier–Stokes equations, sleep dynamics exploration and automatic annotation by combining modern harmonic analysis tools, harmonic functions in slabs and half-spaces, Andoni –Krauthgamer –Razenshteyn characterization of sketchable norms fails for sketchable metrics, random matrix theory, multiplicative completion of redundant systems in Hilbert and Banach function spaces. Efforts have been made to ensure that the content of the book constitutes a valuable resource for graduate students as well as senior researchers working on Harmonic Analysis and its various interconnections with related areas.
This is the second volume of the Handbook of the Geometry and Topology of Singularities, a series which aims to provide an accessible account of the state-of-the-art of the subject, its frontiers, and its interactions with other areas of research. This volume consists of ten chapters which provide an in-depth and reader-friendly survey of some of the foundational aspects of singularity theory and related topics. Singularities are ubiquitous in mathematics and science in general. Singularity theory interacts energetically with the rest of mathematics, acting as a crucible where different types of mathematical problems interact, surprising connections are born and simple questions lead to ideas which resonate in other parts of the subject, and in other subjects. Authored by world experts, the various contributions deal with both classical material and modern developments, covering a wide range of topics which are linked to each other in fundamental ways. The book is addressed to graduate students and newcomers to the theory, as well as to specialists who can use it as a guidebook.