Download Free Removal Of Cis 12 Dichloroethylene From Groundwater Using A Restored Wetland Book in PDF and EPUB Free Download. You can read online Removal Of Cis 12 Dichloroethylene From Groundwater Using A Restored Wetland and write the review.

Across the United States, thousands of hazardous waste sites are contaminated with chemicals that prevent the underlying groundwater from meeting drinking water standards. These include Superfund sites and other facilities that handle and dispose of hazardous waste, active and inactive dry cleaners, and leaking underground storage tanks; many are at federal facilities such as military installations. While many sites have been closed over the past 30 years through cleanup programs run by the U.S. Department of Defense, the U.S. EPA, and other state and federal agencies, the remaining caseload is much more difficult to address because the nature of the contamination and subsurface conditions make it difficult to achieve drinking water standards in the affected groundwater. Alternatives for Managing the Nation's Complex Contaminated Groundwater Sites estimates that at least 126,000 sites across the U.S. still have contaminated groundwater, and their closure is expected to cost at least $110 billion to $127 billion. About 10 percent of these sites are considered "complex," meaning restoration is unlikely to be achieved in the next 50 to 100 years due to technological limitations. At sites where contaminant concentrations have plateaued at levels above cleanup goals despite active efforts, the report recommends evaluating whether the sites should transition to long-term management, where risks would be monitored and harmful exposures prevented, but at reduced costs.
In the past decade, officials responsible for clean-up of contaminated groundwater have increasingly turned to natural attenuation-essentially allowing naturally occurring processes to reduce the toxic potential of contaminants-versus engineered solutions. This saves both money and headaches. To the people in surrounding communities, though, it can appear that clean-up officials are simply walking away from contaminated sites. When is natural attenuation the appropriate approach to a clean-up? This book presents the consensus of a diverse committee, informed by the views of researchers, regulators, and community activists. The committee reviews the likely effectiveness of natural attenuation with different classes of contaminants-and describes how to evaluate the "footprints" of natural attenuation at a site to determine whether natural processes will provide adequate clean-up. Included are recommendations for regulatory change. The committee emphasizes the importance of the public's belief and attitudes toward remediation and provides guidance on involving community stakeholders throughout the clean-up process. The book explores how contamination occurs, explaining concepts and terms, and includes case studies from the Hanford nuclear site, military bases, as well as other sites. It provides historical background and important data on clean-up processes and goes on to offer critical reviews of 14 published protocols for evaluating natural attenuation.
​This volume provides a review of the past 10 to 15 years of intensive research, development and demonstrations that have been on the forefront of developing bioaugmentation into a viable remedial technology. This volume provides both a primer on the basic microbial processes involved in bioaugmentation, as well as a thorough summary of the methodology for implementing the technology. This reference volume will serve as a valuable resource for environmental remediation professionals who seek to understand, evaluate, and implement bioaugmentation.
An international group of researchers and engineers discuss using natural attenuation to degrade contaminants and thereby remediate soils and groundwater. This volume describes laboratory studies and field demonstrations in support of subsurface remediation at military, manufactured gas plant, landfill, petroleum spill, and other sites. The contaminants of concern include benzene, toluene, ethyl-benzene, and xylenes (BTEX); naphthalene; trichloroethene; trichlorethane; and perchloroethylene. Analytical methods for assessing the potential for natural attenuation (passive bioremediation) at a given site and for confirming and documenting efficacy are discussed.
As demand for water increases, water managers and planners will need to look widely for ways to improve water management and augment water supplies. This book concludes that artificial recharge can be one option in an integrated strategy to optimize total water resource management and that in some cases impaired-quality water can be used effectively as a source for artificial recharge of ground water aquifers. Source water quality characteristics, pretreatment and recharge technologies, transformations during transport through the soil and aquifer, public health issues, economic feasibility, and legal and institutional considerations are addressed. The book evaluates three main types of impaired quality water sourcesâ€"treated municipal wastewater, stormwater runoff, and irrigation return flowâ€"and describes which is the most consistent in terms of quality and quantity. Also included are descriptions of seven recharge projects.
At hundreds of thousands of commercial, industrial, and military sites across the country, subsurface materials including groundwater are contaminated with chemical waste. The last decade has seen growing interest in using aggressive source remediation technologies to remove contaminants from the subsurface, but there is limited understanding of (1) the effectiveness of these technologies and (2) the overall effect of mass removal on groundwater quality. This report reviews the suite of technologies available for source remediation and their ability to reach a variety of cleanup goals, from meeting regulatory standards for groundwater to reducing costs. The report proposes elements of a protocol for accomplishing source remediation that should enable project managers to decide whether and how to pursue source remediation at their sites.