Download Free Remote Sensing Of The Atmosphere By Ground Based Microwave Radiometry Book in PDF and EPUB Free Download. You can read online Remote Sensing Of The Atmosphere By Ground Based Microwave Radiometry and write the review.

This book contains a selection of refereed papers presented at the 6 Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment held in Florence, Italy on March 15-18, 1999. Over the last two decades, passive microwave remote sensing has made considerable progress, and has achieved significant results in the study of the Earth's surface and atmosphere. Many years of observations with ground-based and satellite-borne sensors have made an important contribution to improving our knowledge of many geophysical processes of the Earth's environment and of global changes. The evolution in microwave radiometers aboard satellites has increased steadily over recent years. At the same time, many investigations have been carried out both to improve the algorithms for the retrieval of geophysical parameters and to develop new technologies. The book is divided into four main sections: three of these are devoted to the observation of the Earth's surface and atmosphere, and the fourth, to future missions and new technologies. The first section deals with the study of sea and land surfaces, and reports recent advances in remote sensing of ocean wind, sea ice, soil moisture and vegetation biomass, including electromagnetic modelling and the assimilation of radiometric data in models of land surface processes. The following two sections are devoted to the measurement of atmospheric quantities which are of fundamental importance in climatology and meteorology, and, since they influence radio-wave propagation, they also impact on several other fields, including geodesy, navigational satellite and radioastronomy. The last section presents an overview of new technologies and plans for future missions.
This volume contains a collection of refereed papers which were presented at the Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment, 14--17 February 1994, Rome, Italy. The last decade has marked a period of steady advancement and new developments in the observation of the terrestrial environment by passive microwave sensors. Both ground-based and satellite-borne systems have improved their accuracy, stability and spatial resolution and are providing a wealth of quantitative data, which are increasingly being employed in application-oriented projects. The contributions in this volume cover different fields of applications of microwave radiometry, the various observation and retrieval techniques and the recent technological developments. The articles are divided into four sections: measurement of atmospheric water vapor and cloud liquid, measurement of rain, observation of the surface, and new radiometric systems.
Combines theoretical concepts with experimental results on thermal microwave radiation to increase the understanding of the complex nature of terrestrial media. Emphasising on radiative transfer models, this book covers the terrestrial aspects, from clear to cloudy atmosphere, precipitation, ocean and land surfaces, vegetation, snow and ice.
This book contains papers by well renowned scientists from all over world --- including Eastern Europe --- which were presented during a specialist meeting on microwave radiometry and its applications to remote sensing of the atmosphere and the surface of the earth held in Florence, Italy, in March 1988. The book is divided into five sections, some of which contain review papers which summarize the most recent advances in the field. The sections are: -- Microwave radiometry of the earth's surface -- Dielectric properties of natural materials -- Microwave radiometry of the atmosphere -- Synergism of passive and active microwave remote sensors -- Technology of passive microwave systems
The ability to effectively monitor the atmosphere on a continuous basis requires remote sensing in microwave. Written for physicists and engineers working in the area of microwave sensing of the atmosphere, Ground-Based Microwave Radiometry and Remote Sensing: Methods and Applications is completely devoted to ground-based remote sensing. This text
Recent advances in theory and observations using passive microwave remote sensing have hightlighted the potential of spaceborne sensors for contributing to the required land surface measurements of soils, vegetation, snow cover and precipitation. Furthermore, the spatial resolution of passive microwave observations matches the special scales of large-scale models of land-atmosphere interactions both for data assimilation and validation. In order to stimulate and focus this research a workshop, sponsored by ESA and NASA, was organized to review the state-of-the-art in microwave radiometry related to land applications and to exchange ideas leading into new directions for future research. This volume contains the refereed papers from the aforementioned ESA/NASA workshop, which are arranged by topic, as well as the (edited) working group reports.
This book is a collection of the lectures, held at the International Summer School ISSAOS-2000 in L'Aquila (Italy), given by invited lecturers coming from both Europe and the USA. The goal of the book is to provide a broad panorama of spaceborne remote sensing techniques, at both microwave and visible-infrared bands and by both active and passive sensors, for the retrieval of atmospheric and oceanic parameters. A significant emphasis is given to the physical modeling background, instrument potential and limitations, inversion methods and applications. Topics on international remote sensing programs and assimilation techniques into numerical weather forecast models are also touched. The main purpose of the book is to offer to young scientists, Ph.D. or equivalent students, and to all who would like to have a broad-spectrum understanding of spaceborne remote sensing capabilities, introductory material to each remote sensing topic written by the most qualified experts in the field.