Download Free Remote Sensing Of Soils Book in PDF and EPUB Free Download. You can read online Remote Sensing Of Soils and write the review.

This book is about applications of remote sensing techniques in the studies on soils. In pursuance of the objective, the book initially provides an introduction to various elements and concepts of remote sensing, and associated technologies , namely Geographic Information System (GIS), Global Positioning System (GPS) in chapter-1. An overview of the sensors used to collect remote sensing data and important Earth observation missions is provided in chapter-2. The processing of satellite digital data (geometric and radiometric corrections, feature reduction, digital data fusion, image enhancements and analysis) is dealt with in Chapter-3. In the chapter to follow the interpretation of remote sensing data , very important and crucial step in d eriving information on natural resources including soils resources, is discussed. An introduction to soils as a natural body with respect to their formation, physical and chemical properties used during inventory of soils, and soil classification is given in Chapter-5.The spectral response patterns of soils including hyperspectral characteristics -fundamental to deriving information on soils from spectral measurements, and the techniques of soil resources mapping are discussed in chapter-6 and -7,respectively. Furthermore, the creation of digital soil resources database and the development of soil information systems, a very important aspect of storage and dissemination of digital soil data to the end users are discussed in ch.apter-8. Lastly, the applications of remote sensing techniques in soil moisture estimation and soil fertility evaluation are covered in chapter-9 and -10, respectively.
This book provides comprehensive coverage of remote sensing techniques and their application in soil science. A clear, step-by-step approach to the various aspects ensures that the reader will gain a good grasp of the subject so that he can apply the techniques to his own field of study.The book opens with a thorough introduction to the physical aspects of electromagnetic radiation and the technical aspects of remote sensing and image processing. This is followed by a discussion of the methods for interpreting remote sensing data, and their application to soils, vegetation, and land as a whole.As the interpretation of soil conditions is based on many aspects (i.e. soil surface, vegetation, land use, land form), the scope of the book is correspondingly broad. It will therefore provide much useful information for students and scientists in soil science, geography, geology, hydrology, ecology, agriculture and civil engineering.
This book reports on developments in Proximal Soil Sensing (PSS) and high resolution digital soil mapping. PSS has become a multidisciplinary area of study that aims to develop field-based techniques for collecting information on the soil from close by, or within, the soil. Amongst others, PSS involves the use of optical, geophysical, electrochemical, mathematical and statistical methods. This volume, suitable for undergraduate course material and postgraduate research, brings together ideas and examples from those developing and using proximal sensors and high resolution digital soil maps for applications such as precision agriculture, soil contamination, archaeology, peri-urban design and high land-value applications, where there is a particular need for high spatial resolution information. The book in particular covers soil sensor sampling, proximal soil sensor development and use, sensor calibrations, prediction methods for large data sets, applications of proximal soil sensing, and high-resolution digital soil mapping. Key themes: soil sensor sampling – soil sensor calibrations – spatial prediction methods – reflectance spectroscopy – electromagnetic induction and electrical resistivity – radar and gamma radiometrics – multi-sensor platforms – high resolution digital soil mapping - applications Raphael A. Viscarra Rossel is a scientist at the Commonwealth Scientific and Industrial Research Organisation (CSIRO) of Australia. Alex McBratney is Pro-Dean and Professor of Soil Science in the Faculty of Agriculture Food & Natural Resources at the University of Sydney in Australia. Budiman Minasny is a Senior Research Fellow in the Faculty of Agriculture Food & Natural Resources at the University of Sydney in Australia.
The environmental and economic importance of monitoring forests and agricultural resources has allowed remote sensing to be increasingly in the development of products and services responding to user needs.This volume presents the main applications in remote sensing for agriculture and forestry, including the primary soil properties, the estimation of the vegetation's biophysical variables, methods for mapping land cover, the contribution of remote sensing for crop and water monitoring, and the estimation of the forest cover properties (cover dynamic, height, biomass).This book, part of a set of six volumes, has been produced by scientists who are internationally renowned in their fields. It is addressed to students (engineers, Masters, PhD), engineers and scientists, specialists in remote sensing applied to agriculture and forestry.Through this pedagogical work, the authors contribute to breaking down the barriers that hinder the use of radar imaging techniques. - Provides clear and concise descriptions of modern remote sensing methods - Explores the most current remote sensing techniques with physical aspects of the measurement (theory) and their applications - Provides chapters on physical principles, measurement, and data processing for each technique described - Describes optical remote sensing technology, including a description of acquisition systems and measurement corrections to be made
Soil Mapping and Process Modeling for Sustainable Land Use Management is the first reference to address the use of soil mapping and modeling for sustainability from both a theoretical and practical perspective. The use of more powerful statistical techniques are increasing the accuracy of maps and reducing error estimation, and this text provides the information necessary to utilize the latest techniques, as well as their importance for land use planning. Providing practical examples to help illustrate the application of soil process modeling and maps, this reference is an essential tool for professionals and students in soil science and land management who want to bridge the gap between soil modeling and sustainable land use planning. - Offers both a theoretical and practical approach to soil mapping and its uses in land use management for sustainability - Synthesizes the most up-to-date research on soil mapping techniques and applications - Provides an interdisciplinary approach from experts worldwide working in soil mapping and land management
With the growing popularity and availability of precision equipment, farmers and producers have access to more data than ever before. With proper implementation, precision agriculture management can improve profitability and sustainability of production. Precision Agriculture Basics is geared at students, crop consultants, farmers, extension workers, and practitioners that are interested in practical applications of site-specific agricultural management. Using a multidisciplinary approach, readers are taught to make data-driven on-farm decisions using the most current knowledge and tools in crop science, agricultural engineering, and geostatistics. Precision Agriculture Basics also features a stunning video glossary including interviews with agronomists on the job and in the field.
Remote Sensing of Soils: Mapping, Monitoring and Measurement covers the basic, theoretical and scientific concepts of multidisciplinary subjects, including sections that relate to soil sciences, remote sensing, geoinformatics, geomatics, civil and water resource engineering, geography, agriculture, disaster management and the earth and environmental sciences. The book consists of defined elements to help guide the reader, including an abstract, introductions, a literature review, methodology, results and discussions, findings, recommendations and conclusions. Each chapter includes theoretical information that is illustrated with flow charts, tables, figures, diagrams and other related illustrations. Site-specific research and case studies are described throughout with geographical and demographical data, current scientific issues, impacts, solutions and societal benefits, thus providing readers from multi-disciplinary backgrounds the tools they need to successful map, analyze and monitor soils. - Covers multispectral, hyperspectral and SAR remote sensing analysis of soil properties, soil moisture, soil salinity, and soil organic matters, etc., in spatio-temporal scale - Includes a section on digital soil mapping, including integrated RS, GIS and insitu surveyed data analysis for digital soil mapping using widely accepted models and approaches - Ideal for readers in the soil sciences, remote sensing, geoinformatics, geomatics, civil and water resource engineering, geography, agriculture, disaster management, and earth and environmental sciences
Recognized and advocated as a powerful tool, the role of remote sensing in identifying, mapping, and monitoring soil salinity and salinization will continue to expand. Remote Sensing of Soil Salinization: Impact on Land Management delineates how to combine science and geospatial technologies for smart environmental management. Choose the Right Tech
Applications of Soil Physics deals with the applications of soil physics and covers topics ranging from infiltration and surface runoff to groundwater drainage, evaporation from bare-surface soils, and uptake of soil moisture by plants. Water balance and energy balance in the field are also discussed, along with tillage and soil structure management. The development and extension of Penman's evaporation formula is also described. This book is comprised of 14 chapters and begins with a systematic description of the field-water cycle and its management, with emphasis on infiltration and runoff; redistribution and drainage; evaporation and transpiration; and irrigation and tillage. Subsequent chapters focus on transpiration from plant canopies; freezing phenomena in soils; scaling and similitude of soil-water phenomena; spatial variability of soil physical properties; and movement of solutes during infiltration into homogeneous soil. Concepts of soil-water availability to plants are considered, together with principles of irrigation management and the advantages and limitations of drip irrigation. This monograph is intended for upper-level undergraduate and graduate students of the environmental, engineering, and agronomic sciences.
′A magnificent achievement. A who′s who of contemporary remote sensing have produced an engaging, wide-ranging and scholarly review of the field in just one volume′ - Professor Paul Curran, Vice-Chancellor, Bournemouth University Remote Sensing acquires and interprets small or large-scale data about the Earth from a distance. Using a wide range of spatial, spectral, temporal, and radiometric scales Remote Sensing is a large and diverse field for which this Handbook will be the key research reference. Organized in four key sections: • Interactions of Electromagnetic Radiation with the Terrestrial Environment: chapters on Visible, Near-IR and Shortwave IR; Middle IR (3-5 micrometers); Thermal IR ; Microwave • Digital sensors and Image Characteristics: chapters on Sensor Technology; Coarse Spatial Resolution Optical Sensors ; Medium Spatial Resolution Optical Sensors; Fine Spatial Resolution Optical Sensors; Video Imaging and Multispectral Digital Photography; Hyperspectral Sensors; Radar and Passive Microwave Sensors; Lidar • Remote Sensing Analysis - Design and Implementation: chapters on Image Pre-Processing; Ground Data Collection; Integration with GIS; Quantitative Models in Remote Sensing; Validation and accuracy assessment; • Remote Sensing Analysis - Applications: LITHOSPHERIC SCIENCES: chapters on Topography; Geology; Soils; PLANT SCIENCES: Vegetation; Agriculture; HYDROSPHERIC and CRYSOPHERIC SCIENCES: Hydrosphere: Fresh and Ocean Water; Cryosphere; GLOBAL CHANGE AND HUMAN ENVIRONMENTS: Earth Systems; Human Environments & Links to the Social Sciences; Real Time Monitoring Systems and Disaster Management; Land Cover Change Illustrated throughout, an essential resource for the analysis of remotely sensed data, the SAGE Handbook of Remote Sensing provides researchers with a definitive statement of the core concepts and methodologies in the discipline.