Download Free Remote Sensing For Oceanography Hydrology And Agriculture Book in PDF and EPUB Free Download. You can read online Remote Sensing For Oceanography Hydrology And Agriculture and write the review.

Divided into three main sections, this text presents: the results derived from satellite studies of the ocean; a variety of hydrology related areas including evapotranspiration and soil moisture; and the concept of Vegetation Condition Index in which the intensity of drought is assessed.
Based on material presented at postgraduate summer school held at University of Dundee, September 1980.
Remote Sensing of the Terrestrial Water Cycle is an outcome of the AGU Chapman Conference held in February 2012. This is a comprehensive volume that examines the use of available remote sensing satellite data as well as data from future missions that can be used to expand our knowledge in quantifying the spatial and temporal variations in the terrestrial water cycle. Volume highlights include: - An in-depth discussion of the global water cycle - Approaches to various problems in climate, weather, hydrology, and agriculture - Applications of satellite remote sensing in measuring precipitation, surface water, snow, soil moisture, groundwater, modeling, and data assimilation - A description of the use of satellite data for accurately estimating and monitoring the components of the hydrological cycle - Discussion of the measurement of multiple geophysical variables and properties over different landscapes on a temporal and a regional scale Remote Sensing of the Terrestrial Water Cycle is a valuable resource for students and research professionals in the hydrology, ecology, atmospheric sciences, geography, and geological sciences communities.
This book is geared for advanced level research in the general subject area of remote sensing and modeling as they apply to the coastal marine environment. The various chapters focus on the latest scientific and technical advances in the service of better understanding coastal marine environments for their care, conservation and management. Chapters specifically deal with advances in remote sensing coastal classifications, environmental monitoring, digital ocean technological advances, geophysical methods, geoacoustics, X-band radar, risk assessment models, GIS applications, real-time modeling systems, and spatial modeling. Readers will find this book useful because it summarizes applications of new research methods in one of the world’s most dynamic and complicated environments. Chapters in this book will be of interest to specialists in the coastal marine environment who deals with aspects of environmental monitoring and assessment via remote sensing techniques and numerical modeling.
Part of an ongoing series of manuals covering the range of applications of remotely sensed imagery, Volume 4 addresses the use of this technology in natural resource management and environmental monitoring. Comprehensive, authoritative, and up-to-date, it covers terrestrial ecosystems, aquatic ecosystems, and agriculture ecosystems, as well as future directions in technology and research.
This book is a collection of overview articles showing how space-based observations, combined with hydrological modeling, have considerably improved our knowledge of the continental water cycle and its sensitivity to climate change. Two main issues are highlighted: (1) the use in combination of space observations for monitoring water storage changes in river basins worldwide, and (2) the use of space data in hydrological modeling either through data assimilation or as external constraints. The water resources aspect is also addressed, as well as the impacts of direct anthropogenic forcing on land hydrology (e.g. ground water depletion, dam building on rivers, crop irrigation, changes in land use and agricultural practices, etc.). Remote sensing observations offer important new information on this important topic as well, which is highly useful for achieving water management objectives.Over the past 15 years, remote sensing techniques have increasingly demonstrated their capability to monitor components of the water balance of large river basins on time scales ranging from months to decades: satellite altimetry routinely monitors water level changes in large rivers, lakes and floodplains. When combined with satellite imagery, this technique can also measure surface water volume variations. Passive and active microwave sensors offer important information on soil moisture (e.g. the SMOS mission) as well as wetlands and snowpack. The GRACE space gravity mission offers, for the first time, the possibility of directly measuring spatio-temporal variations in the total vertically integrated terrestrial water storage. When combined with other space observations (e.g. from satellite altimetry and SMOS) or model estimates of surface waters and soil moisture, space gravity data can effectively measure groundwater storage variations. New satellite missions, planned for the coming years, will complement the constellation of satellites monitoring waters on land. This is particularly the case for the SWOT mission, which is expected to revolutionize land surface hydrology. Previously published in Surveys in Geophysics, Volume 37, No. 2, 2016
Remote Sensing of Ocean and Coastal Environments advances the scientific understanding and application of technologies to address a variety of areas relating to sustainable development, including environmental systems analysis, environmental management, clean processes, green chemistry and green engineering. Through each contributed chapter, the book covers ocean remote sensing, ocean color monitoring, modeling biomass and the carbon of oceanic ecosystems, sea surface temperature (SST) and sea surface salinity, ocean monitoring for oil spills and pollutions, coastal erosion and accretion measurement. This book is aimed at those with a common interest in oceanography techniques, sustainable development and other diverse backgrounds within earth and ocean science fields. This book is ideal for academicians, scientists, environmentalists, meteorologists, environmental consultants and computing experts working in the areas of earth and ocean sciences. Provides a comprehensive assessment of various ocean processes and their relative phenomena Includes graphical abstract and photosets in each chapter Presents literature reviews, case studies and applications
This book presents a comprehensive selection of applications employed in environmental remote sensing using optical and thermal infrared satellite-sensors aiming to map natural resources, crops, groundwater, surface water, aquatic ecosystem, land degradation, air quality, renewable energy, regional resources, and climate-related geophysical processes. The technologies presented in this book also include satellite images, space-borne radar sensors focusing on the most versatile one, data from synthetic aperture radar (SAR), scatterometers and radar altimeters in Egypt. This volume also presents a thorough explanation of the remote sensing role showing physical fundamentals of the climate change phenomenon including gas emissions, and the impact on resources concerning the sustainable development of Egypt. Besides, the book includes an analysis of oil pollution in both Mediterranean and Red Seas This book is intended for environmental policymakers working in Egypt as well as scientists working with remote sensing technologies in highly populated arid regions.