Download Free Remote Sensing For Nature Monitoring Book in PDF and EPUB Free Download. You can read online Remote Sensing For Nature Monitoring and write the review.

Remote sensing has been successfully applied in monitoring of protected areas around the world. With intensified impacts of climate and environmental change, protected areas become increasingly important to serve as indicators of and buffers against the impacts of the disturbances. Remote sensing plays an irreplaceable role in this frontline of challenges. The subjects and contents of the articles collected in this book reflect the state-of-the-art applications of remote sensing for capturing dynamics of environmental and ecological variations of the protected areas. The examples include revealing the level, growth rate, trend, and distribution pattern of the night-time light of global protected areas; quantifying the energy budget, water cycle, and carbon sink over the Three-River Headwaters Region in the hinterland of the Tibetan Plateau; monitoring wetland change in a cross-boundary zone between Northeast China and the Russian Far East; and monitoring applications and change analyses in protected areas of boreal forests, dryland shrubs, coastal salt marshes, large lakes, and temperate semi-humid to semi-arid transitional agricultural regions, using a variety of sensor data with innovative approaches. Also included in this collection is a bibliometric analysis that suggests the intellectual structure in remote sensing of protected areas from the perspective of journal publications.
This report is the result of a review on the possibilities of remote sensing for applications in the nature domain, with emphasis on Natura 2000 habitat monitoring. In recent years, enormous progress has been made in the availability and processing of high-resolution satellite and drone images. This increases the potential application for answering all kinds of policy and nature management questions. We demonstrate that remote sensing can have much added value for the monitoring of habitat distribution and habitat quality across a wide range of nature areas. We also demonstrate that higher spatial resolution of remotely sensed imagery often results in better classification accuracies. Deep learning techniques are also becoming popular since they are able to consider the contextual information and not only the spectral information from the imagery in classifying or identifying objects (from habitats to individual plant species). However, the amount of training data can have a large impact on classification accuracies, much more than for more conventional classification methods. This, then, requires a large investment in the collection of in-situ (field) data as well. Another finding is that including LiDAR and hyperspectral data can significantly improve detailed habitat mapping. In summary, the resource of remote sensing data and techniques should be selected depending on the relevant nature types, research questions and nature targets at a specific local, regional or national scale. It requires more communication between remote sensing researchers and ecologists. If nature goals and remote sensing technologies are brought together at an early stage, many applications will be possible. For the Netherlands, the remote sensing community should focus especially on monitoring the structure and function of habitat types. Also, such large-scale and long-term remote sensing monitoring should become part of a national nature monitoring programme.
The book attempts to match user need to the level of technology required for management, planning and monitoring of natural resources. It provides clear guidance on the reliability, accuracy and cost of applications. Editors believe that this endeavour shall provide a valuable scientific basis to students and researchers to address the future challenges in natural resources monitoring and management. Accurate inventory, assessment and periodic monitoring of resources will enable the policy makers to keep an eye on optimal utilization of resources and development process to take timely interventions. We further hope this book will be a valuable reference and provide practical guidance for all who work towards the goal of the sustainable and judicious use of resources.
This book provides a step-by-step guide on how to use various publicly available remotely sensed time series data sources for environmental monitoring and assessment. Readers will learn how to extract valuable information on global changes from a 20-year collection of ready-to-use remotely sensed data through the free open statistical software R and its geographic data analysis and modeling tools. The case studies are from the Mediterranean region—a designated hot spot regarding climate change effects. Each chapter is dedicated to specific remote sensing products chosen for their spatial resolution. The methods used are adapted from large-scale to smaller-scale problems for different land cover areas. Features Includes real-world applications of environmental remotely sensed data Analyzes the advantages and restrictions of each data source Focuses on a wide spectrum of applications, such as hydrology, vegetation changes, land surface temperature, fire detection, and impacts Includes R computer codes with explanatory comments and all applications use only freely available remotely sensed data Presents a step-by-step processing through open source GIS and statistical analysis software Advanced Environmental Monitoring with Remote Sensing Time Series Data and R describes and provides details on recent advances concerning publicly available remotely sensed time series data in environmental monitoring and assessment. This book is a must-have practical guide for environmental researchers, professionals, and students.
The ability to anticipate the impacts of global environmental changes on natural resources is fundamental to designing appropriate and optimised adaptation and mitigation strategies. However, this requires the scientific community to have access to reliable, large-scale information on spatio-temporal changes in the distribution of abiotic conditions and on the distribution, structure, composition, and functioning of ecosystems. Satellite remote sensing can provide access to some of this fundamental data by offering repeatable, standardised, and verifiable information that is directly relevant to the monitoring and management of our natural capital. This book demonstrates how ecological knowledge and satellite-based information can be effectively combined to address a wide array of current natural resource management needs. By focusing on concrete applied examples in both the marine and terrestrial realms, it will help pave the way for developing enhanced levels of collaboration between the ecological and remote sensing communities, as well as shaping their future research directions. Satellite Remote Sensing and the Management of Natural Resources is primarily aimed at ecologists and remote sensing specialists, as well as policy makers and practitioners in the fields of conservation biology, biodiversity monitoring, and natural resource management.
Part of an ongoing series of manuals covering the range of applications of remotely sensed imagery, Volume 4 addresses the use of this technology in natural resource management and environmental monitoring. Comprehensive, authoritative, and up-to-date, it covers terrestrial ecosystems, aquatic ecosystems, and agriculture ecosystems, as well as future directions in technology and research.
Sustainable management of natural resources is an urgent need, given the changing climatic conditions of Earth systems. The ability to monitor natural resources precisely and accurately is increasingly important. New and advanced remote sensing tools and techniques are continually being developed to monitor and manage natural resources in an effective way. Remote sensing technology uses electromagnetic sensors to record, measure and monitor even small variations in natural resources. The addition of new remote sensing datasets, processing techniques and software makes remote sensing an exact and cost-effective tool and technology for natural resource monitoring and management. Advances in Remote Sensing for Natural Resources Monitoring provides a detailed overview of the potential applications of advanced satellite data in natural resource monitoring. The book determines how environmental and - ecological knowledge and satellite-based information can be effectively combined to address a wide array of current natural resource management needs. Each chapter covers different aspects of remote sensing approach to monitor the natural resources effectively, to provide a platform for decision and policy. This important work: Provides comprehensive coverage of advances and applications of remote sensing in natural resources monitoring Includes new and emerging approaches for resource monitoring with case studies Covers different aspects of forest, water, soil- land resources, and agriculture Provides exemplary illustration of themes such as glaciers, surface runoff, ground water potential and soil moisture content with temporal analysis Covers blue carbon, seawater intrusion, playa wetlands, and wetland inundation with case studies Showcases disaster studies s
Remote Sensing plays a key role in monitoring the various manifestations of global climate change. It is used routinely in the assessment and mapping of biodiversity over large areas, in the monitoring of changes to the physical environment, in assessing threats to various components of natural systems, and in the identification of priority areas for conservation. This book presents the fundamentals of remote sensing technology, but rather than containing lengthy explanations of sensor specifications and operation, it concentrates instead on the application of the technology to key environmental systems. Each system forms the basis of a separate chapter, and each is illustrated by real world case studies and examples. Readership The book is intended for advanced undergraduate and graduate students in earth science, environmental science, or physical geography taking a course in environmental remote sensing. It will also be an invaluable reference for environmental scientists and managers who require an overview of the use of remote sensing in monitoring and mapping environmental change at regional and global scales. Additional resources for this book can be found at: http://www.wiley.com/go/purkis/remote.
The book will provide an overview of the practical application of remote sensing for the purposes of nature conservation as developed by ecologists in collaboration with remote sensing specialists, providing guidance on all phases from the planning of remote sensing projects for conservation to the interpretation and validation of the images. This book and linked activities have been selected as finalists of the European Natura 2000 award 2020.https://natura2000award-application.eu/finalist/3126
Satellite remote sensing presents an amazing opportunity to inform biodiversity conservation by inexpensively gathering repeated monitoring information for vast areas of the Earth. However, these observations first need processing and interpretation if they are to inform conservation action. Through a series of case studies, this book presents detailed examples of the application of satellite remote sensing, covering both aquatic and terrestrial ecosystems, to conservation. The authors describe how collaboration between the remote sensing and conservation communities makes satellite data functional for operational conservation, and provide concrete examples of the lessons learned in addition to the scientific details. The editors, one at NASA and the other at a conservation NGO, have brought together leading researchers in conservation remote sensing to share their experiences from project development through to application, and emphasise the human side of these projects.