Download Free Remote Sensing Applications In Environmental And Earth System Sciences Book in PDF and EPUB Free Download. You can read online Remote Sensing Applications In Environmental And Earth System Sciences and write the review.

Remote Sensing Applications in Environmental and Earth System Sciences is a contemporary, multi-disciplinary, multi-scaling, updated, and upgraded approach of applied remote sensing in the environment. The book begins with an overview of remote sensing technology, and then explains the types of data that can be used as well as the image processing and analysis methods that can be applied to each type of application through the use of case studies throughout. Includes a wide spectrum of environmental applications and issues Explains methodological image analysis and interpretation procedures for conducting a variety of environmental analyses Discusses the development of early warning systems Covers monitoring of the environment as a whole – atmosphere, land, and water Explores the latest remote sensing systems in environmental applications This book is an excellent resource for anyone who is interested in remote sensing technologies and their use in Earth systems, natural resources, and environmental science.
Land Remote Sensing and Global Environmental Change: The Science of ASTER and MODIS is an edited compendium of contributions dealing with ASTER and MODIS satellite sensors aboard NASA's Terra and Aqua platforms launched as part of the Earth Observing System fleet in 1999 and 2002 respectively. This volume is divided into six sections. The first three sections provide insights into the history, philosophy, and evolution of the EOS, ASTER and MODIS instrument designs and calibration mechanisms, and the data systems components used to manage and provide the science data and derived products. The latter three sections exclusively deal with ASTER and MODIS data products and their applications, and the future of these two classes of remotely sensed observations.
The technical, scientific, policy, and institutional environment for conducting Earth science research has been changing rapidly over the past few decades. Changes in the technical environment are due both to the advent of new types and sources of remote sensing data, which have higher spatial and spectral resolution, and to the development of vastly expanded capabilities in data access, visualization, spatial data integration, and data management. The scientific environment is changing because of the strong emphasis on global change research, both nationally and internationally, and the evolving data requirements for that research. And the policy and institutional environment for the production of Earth observation data is changing with the diversification of both remote sensing data and the institutions that produce the data. In this report, the Space Studies Board's Steering Committee on Space Applications and Commercialization explores the implications of this changing environment, examining the opportunities and challenges it presents.
Remote Sensing plays a key role in monitoring the various manifestations of global climate change. It is used routinely in the assessment and mapping of biodiversity over large areas, in the monitoring of changes to the physical environment, in assessing threats to various components of natural systems, and in the identification of priority areas for conservation. This book presents the fundamentals of remote sensing technology, but rather than containing lengthy explanations of sensor specifications and operation, it concentrates instead on the application of the technology to key environmental systems. Each system forms the basis of a separate chapter, and each is illustrated by real world case studies and examples. Readership The book is intended for advanced undergraduate and graduate students in earth science, environmental science, or physical geography taking a course in environmental remote sensing. It will also be an invaluable reference for environmental scientists and managers who require an overview of the use of remote sensing in monitoring and mapping environmental change at regional and global scales. Additional resources for this book can be found at: http://www.wiley.com/go/purkis/remote.
Remote Sensing Applications in Environmental Research is the basis for advanced Earth Observation (EO) datasets used in environmental monitoring and research. Now that there are a number of satellites in orbit, EO has become imperative in today’s sciences, weather and natural disaster prediction. This highly interdisciplinary reference work brings together diverse studies on remote sensing and GIS, from a theoretical background to its applications, represented through various case studies and the findings of new models. The book offers a comprehensive range of contributions by well-known scientists from around the world and opens a new window for students in presenting interdisciplinary and methodological resources on the latest research. It explores various key aspects and offers state-of-the-art research in a simplified form, describing remote sensing and GIS studies for those who are new to the field, as well as for established researchers.
This book provides information on the Earth science remote sensing data information and data format such as HDF-EOS. It evaluates the current data processing approaches and introduces data searching and ordering from different public domains. It further explores the remote sensing and GIS migration products and WebGIS applications. Both volumes are designed to give an introduction to current and future NASA, NOAA and other Earth science remote sensing.
This book brings together a representative set of Earth System Science (ESS) applications of the neural network (NN) technique. It examines a progression of atmospheric and oceanic problems, which, from the mathematical point of view, can be formulated as complex, multidimensional, and nonlinear mappings. It is shown that these problems can be solved utilizing a particular type of NN – the multilayer perceptron (MLP). This type of NN applications covers the majority of NN applications developed in ESSs such as meteorology, oceanography, atmospheric and oceanic satellite remote sensing, numerical weather prediction, and climate studies. The major properties of the mappings and MLP NNs are formulated and discussed. Also, the book presents basic background for each introduced application and provides an extensive set of references. “This is an excellent book to learn how to apply artificial neural network methods to earth system sciences. The author, Dr. Vladimir Krasnopolsky, is a universally recognized master in this field. With his vast knowledge and experience, he carefully guides the reader through a broad variety of problems found in the earth system sciences where neural network methods can be applied fruitfully. (...) The broad range of topics covered in this book ensures that researchers/graduate students from many fields (...) will find it an invaluable guide to neural network methods.” (Prof. William W. Hsieh, University of British Columbia, Vancouver, Canada) “Vladimir Krasnopolsky has been the “founding father” of applying computation intelligence methods to environmental science; (...) Dr. Krasnopolsky has created a masterful exposition of a young, yet maturing field that promises to advance a deeper understanding of best modeling practices in environmental science.” (Dr. Sue Ellen Haupt, National Center for Atmospheric Research, Boulder, USA) “Vladimir Krasnopolsky has written an important and wonderful book on applications of neural networks to replace complex and expensive computational algorithms within Earth System Science models. He is uniquely qualified to write this book, since he has been a true pioneer with regard to many of these applications. (...) Many other examples of creative emulations will inspire not just readers interested in the Earth Sciences, but any other modeling practitioner (...) to address both theoretical and practical complex problems that may (or will!) arise in a complex system." ” (Prof. Eugenia Kalnay, University of Maryland, USA)
This book starts with an overview of GIS technology, what GIS technology is, what it can do, what software products are available, etc. Then, throughout the book, the author explains with many case studies, programs, maps, graphics, and 3D models how GIS and other related technologies can be used to automate mapping processes, collect, process, edit, store, manage, and share datasets, statistically analyze data, model, and visualize large datasets to understand patterns, trends, and relationships to make educated decisions. This book is an excellent resource for anyone who is interested in GIS and related technologies, geology, natural resource, and environmental science.
"This book is a critical reference source for the latest research on innovative methods for analyzing geographic data and utilizing sensor technologies for environmental monitoring. Featuring extensive coverage across a range of relevant perspectives and topics, such as land use, geospatial analysis, image interpretation, and site-suitability analysis"--
Land remote sensing: the use of space-based satellite technologies to obtain information on environmental variables such as land-use and land-covering combination with other types of data can provide information on changes in the Earth's surface and atmosphere that are critical for forecasting and responding to human welfare issues, such as disease outbreaks, food shortages, and floods. This book summarizes a workshop on the potential contributions of remotely sensed data to land-use and land-cover change and ways to use physical, biological, temporal, and social characteristics of particular locations to support decisions about human welfare. The discussions focused on human health and food security, two aspects of human welfare in which remotely-sensed environmental conditions play a key role. Examples illustrating the possibilities for applying remote sensing for societal benefit are included throughout the report. As a result of the workshop, three themes were identified that, if fostered, could help realize the potential for the application of land remote sensing to decisions about human welfare: (1) integration of spatial data on environmental conditions derived from remote sensing with socioeconomic data; (2) communication between remote sensing scientists and decision makers to determine effective use of land remote sensing data for human welfare issues; and (3) acquisition and access to long-term environmental data and development of capacity to interpret these data.