Download Free Remote Sensing Advances For Earth System Science Book in PDF and EPUB Free Download. You can read online Remote Sensing Advances For Earth System Science and write the review.

This book presents cutting-edge remote sensing research, outlining the advanced use of European Space Agency (ESA) satellite data in the context of climate change. The ESA, through its Support to Science Element (STSE) Programme, funds a network of young post-doc scientists pursuing 2-year cutting-edge research projects in the field of remote sensing. This “Changing Earth Science Network” focuses on the exploitation of Earth Observation (EO) data to address major issues concerning the broader context of climate change in five scientific research domains: the oceans, atmosphere, cryosphere, land and solid earth.
" ... articles originating from invited papers published in the Philosophical Transactions of the Royal Society, [series A]."-- P. [4] of cover.
To better understand the various processes and interactions that govern the Earth system and to determine whether recent human-induced changes could ultimately de-stabilise its dynamics, both natural system variability and the consequences of human activities have to be observed and quantified. In this context, the European Space Agency (ESA) published in 2006 the document “The Changing Earth: New Scientific Challenges for ESA's Living Planet Programme” as the main driver of ESA’s new Earth Observation (EO) science strategy. The document outlines 25 major scientific challenges covering all the different aspects of the Earth system, where EO technology and ESA missions may provide a key contribution. In this framework, and aiming at enhancing the ESA scientific support towards the achievement of “The Challenges”, the Agency has launched in 2008 a new initiative – the Changing Earth Science Network – to support young scientists to undertake leading-edge research activities contributing to achieve the 25 scientific challenges of the LPP by maximising the use of ESA data. The initiative is implemented through a number of research projects proposed and led by early-stage scientists at post-doctoral level for a period of two years which are summarized in this SpringerBrief. These projects undertake innovative research activities furthering into the most pressing issues of the Earth system, while exploiting ESA missions data with special attention to the ESA data archives and the new Earth Explorer missions.
Significant advances have been made in mapping and monitoring our environment from Earth Observation satellites, but now, in the 1990s, remote sensing has reached a new technological and scientific frontier. Advances in Environmental Remote Sensing not only describes recent technological advances but also emphasises the parallel progress that has been made in interpreting and applying data to solve environmental problems. A team of scientists working at the research edge examine applications using examples from their own current work, and identify key paths for the development of remote sensing into the next century. This is an essential book for students of geography, environmental science, ecology, forestry and geology, as well as an important reference tool for anyone interested in applications of remote sensing.
Advanced Remote Sensing is an application-based reference that provides a single source of mathematical concepts necessary for remote sensing data gathering and assimilation. It presents state-of-the-art techniques for estimating land surface variables from a variety of data types, including optical sensors such as RADAR and LIDAR. Scientists in a number of different fields including geography, geology, atmospheric science, environmental science, planetary science and ecology will have access to critically-important data extraction techniques and their virtually unlimited applications. While rigorous enough for the most experienced of scientists, the techniques are well designed and integrated, making the book's content intuitive, clearly presented, and practical in its implementation. - Comprehensive overview of various practical methods and algorithms - Detailed description of the principles and procedures of the state-of-the-art algorithms - Real-world case studies open several chapters - More than 500 full-color figures and tables - Edited by top remote sensing experts with contributions from authors across the geosciences
DEEP LEARNING FOR THE EARTH SCIENCES Explore this insightful treatment of deep learning in the field of earth sciences, from four leading voices Deep learning is a fundamental technique in modern Artificial Intelligence and is being applied to disciplines across the scientific spectrum; earth science is no exception. Yet, the link between deep learning and Earth sciences has only recently entered academic curricula and thus has not yet proliferated. Deep Learning for the Earth Sciences delivers a unique perspective and treatment of the concepts, skills, and practices necessary to quickly become familiar with the application of deep learning techniques to the Earth sciences. The book prepares readers to be ready to use the technologies and principles described in their own research. The distinguished editors have also included resources that explain and provide new ideas and recommendations for new research especially useful to those involved in advanced research education or those seeking PhD thesis orientations. Readers will also benefit from the inclusion of: An introduction to deep learning for classification purposes, including advances in image segmentation and encoding priors, anomaly detection and target detection, and domain adaptation An exploration of learning representations and unsupervised deep learning, including deep learning image fusion, image retrieval, and matching and co-registration Practical discussions of regression, fitting, parameter retrieval, forecasting and interpolation An examination of physics-aware deep learning models, including emulation of complex codes and model parametrizations Perfect for PhD students and researchers in the fields of geosciences, image processing, remote sensing, electrical engineering and computer science, and machine learning, Deep Learning for the Earth Sciences will also earn a place in the libraries of machine learning and pattern recognition researchers, engineers, and scientists.
Computers in Earth and Environmental Sciences: Artificial Intelligence and Advanced Technologies in Hazards and Risk Management addresses the need for a comprehensive book that focuses on multi-hazard assessments, natural and manmade hazards, and risk management using new methods and technologies that employ GIS, artificial intelligence, spatial modeling, machine learning tools and meta-heuristic techniques. The book is clearly organized into four parts that cover natural hazards, environmental hazards, advanced tools and technologies in risk management, and future challenges in computer applications to hazards and risk management. Researchers and professionals in Earth and Environmental Science who require the latest technologies and advances in hazards, remote sensing, geosciences, spatial modeling and machine learning will find this book to be an invaluable source of information on the latest tools and technologies available. - Covers advanced tools and technologies in risk management of hazards in both the Earth and Environmental Sciences - Details the benefits and applications of various technologies to assist researchers in choosing the most appropriate techniques for purpose - Expansively covers specific future challenges in the use of computers in Earth and Environmental Science - Includes case studies that detail the applications of the discussed technologies down to individual hazards
This open access book offers a summary of the development of Digital Earth over the past twenty years. By reviewing the initial vision of Digital Earth, the evolution of that vision, the relevant key technologies, and the role of Digital Earth in helping people respond to global challenges, this publication reveals how and why Digital Earth is becoming vital for acquiring, processing, analysing and mining the rapidly growing volume of global data sets about the Earth. The main aspects of Digital Earth covered here include: Digital Earth platforms, remote sensing and navigation satellites, processing and visualizing geospatial information, geospatial information infrastructures, big data and cloud computing, transformation and zooming, artificial intelligence, Internet of Things, and social media. Moreover, the book covers in detail the multi-layered/multi-faceted roles of Digital Earth in response to sustainable development goals, climate changes, and mitigating disasters, the applications of Digital Earth (such as digital city and digital heritage), the citizen science in support of Digital Earth, the economic value of Digital Earth, and so on. This book also reviews the regional and national development of Digital Earth around the world, and discusses the role and effect of education and ethics. Lastly, it concludes with a summary of the challenges and forecasts the future trends of Digital Earth. By sharing case studies and a broad range of general and scientific insights into the science and technology of Digital Earth, this book offers an essential introduction for an ever-growing international audience.
Sustainable management of natural resources is an urgent need, given the changing climatic conditions of Earth systems. The ability to monitor natural resources precisely and accurately is increasingly important. New and advanced remote sensing tools and techniques are continually being developed to monitor and manage natural resources in an effective way. Remote sensing technology uses electromagnetic sensors to record, measure and monitor even small variations in natural resources. The addition of new remote sensing datasets, processing techniques and software makes remote sensing an exact and cost-effective tool and technology for natural resource monitoring and management. Advances in Remote Sensing for Natural Resources Monitoring provides a detailed overview of the potential applications of advanced satellite data in natural resource monitoring. The book determines how environmental and - ecological knowledge and satellite-based information can be effectively combined to address a wide array of current natural resource management needs. Each chapter covers different aspects of remote sensing approach to monitor the natural resources effectively, to provide a platform for decision and policy. This important work: Provides comprehensive coverage of advances and applications of remote sensing in natural resources monitoring Includes new and emerging approaches for resource monitoring with case studies Covers different aspects of forest, water, soil- land resources, and agriculture Provides exemplary illustration of themes such as glaciers, surface runoff, ground water potential and soil moisture content with temporal analysis Covers blue carbon, seawater intrusion, playa wetlands, and wetland inundation with case studies Showcases disaster studies such as floods, tsunami, showing where remote sensing technologies have been used This edited book is the first volume of the book series Advances in Remote Sensing for Earth Observation.
An introduction to the physical principles underlying Earth remote sensing. The development of spaceborne remote sensing technology has led to a new understanding of the complexity of our planet by allowing us to observe Earth and its environments on spatial and temporal scales that are unavailable to terrestrial sensors. Remote Sensing Physics: An Introduction to Observing Earth from Space is a graduate-level text that examines the underlying physical principles and techniques used to make remote measurements, along with the algorithms used to extract geophysical information from those measurements. Volume highlights include: Basis for Earth remote sensing including ocean, land, and atmosphere Description of satellite orbits relevant for Earth observations Physics of passive sensing, including infrared, optical and microwave imagers Physics of active sensing, including radars and lidars Overview of current and future Earth observation missions Compendium of resources including an extensive bibliography Sample problem sets and answers available to instructors The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.