Download Free Remote Plasma Enhanced Chemical Vapor Deposition Of Amorphous Hydrogenated Silicon Carbon Alloys Book in PDF and EPUB Free Download. You can read online Remote Plasma Enhanced Chemical Vapor Deposition Of Amorphous Hydrogenated Silicon Carbon Alloys and write the review.

Semiconductors made from amorphous silicon have recently become important for their commercial applications in optical and electronic devices including FAX machines, solar cells, and liquid crystal displays. Plasma Deposition of Amorphous Silicon-Based Materials is a timely, comprehensive reference book written by leading authorities in the field. This volume links the fundamental growth kinetics involving complex plasma chemistry with the resulting semiconductor film properties and the subsequent effect on the performance of the electronic devices produced. Focuses on the plasma chemistry of amorphous silicon-based materials Links fundamental growth kinetics with the resulting semiconductor film properties and performance of electronic devices produced Features an international group of contributors Provides the first comprehensive coverage of the subject, from deposition technology to materials characterization to applications and implementation in state-of-the-art devices
Semiconductors made from amorphous silicon have recently become important for their commercial applications in optical and electronic devices including FAX machines, solar cells, and liquid crystal displays. Plasma Deposition of Amorphous Silicon-Based Materials is a timely, comprehensive reference book written by leading authorities in the field. This volume links the fundamental growth kinetics involving complex plasma chemistry with the resulting semiconductor film properties and the subsequent effect on the performance of the electronic devices produced. Key Features * Focuses on the plasma chemistry of amorphous silicon-based materials * Links fundamental growth kinetics with the resulting semiconductor film properties and performance of electronic devices produced * Features an international group of contributors * Provides the first comprehensive coverage of the subject, from deposition technology to materials characterization to applications and implementation in state-of-the-art devices
The influences of precursor molecular structure and electronic properties on the molecular structure, stoichiometry, and optical properties of a-SiC:H alloy films prepared through plasma enhanced chemical vapor deposition were investigated using infrared spectroscopy, ultraviolet-visible absorption spectroscopy, and sputtered neutral atom mass spectrometry (SNMS). Members of the homologous series tetramethylsilane (TeMS), trimethylsilane (TrMS), and dimethylsilane (DMS) as well as methane-silane (MS) were characterized as a-SiC:H precursors. Film structure, optical properties, and stoichiometry were studied as a function of precursor structure and deposition conditions, with deposition pressure serving as the manipulated variable. The infrared spectra of films prepared from the alkylsilane precursors revealed a strong dependence of the film structure on the deposition pressure, with high pressures ($>$0.1 torr) producing linear, polymeric films, and low pressures ($