Download Free Reliable Real Time Solution Of Parametrized Partial Differential Equations Book in PDF and EPUB Free Download. You can read online Reliable Real Time Solution Of Parametrized Partial Differential Equations and write the review.

We present a technique for the rapid and reliable prediction of linear-functional outputs of elliptic (and parabolic) partial differential equations with affine parameter dependence. The essential components are (i) (provably) rapidly convergent global reduced basis approximations, Galerkin projection onto a space W(sub N) spanned by solutions of the governing partial differential equation at N selected points in parameter space; (ii) a posteriori error estimation, relaxations of the error-residual equation that provide inexpensive yet sharp and rigorous bounds for the error in the outputs of interest; and (iii) off-line/on-line computational procedures, methods which decouple the generation and projection stages of the approximation process. The operation count for the on-line stage, in which, given a new parameter value, we calculate the output of interest and associated error bound, depends only on N (typically very small) and the parametric complexity of the problem; the method is thus ideally suited for the repeated and rapid evaluations required in the context of parameter estimation, design, optimization, and real-time control. Prudhomme, C. and Rovas, D. V. and Veroy, K. and Machiels, L. and Maday, Y. and Patera, A. T. and Turinici, G. and Zang, Thomas A., Jr. (Technical Monitor) Langley Research Center
This book provides a thorough introduction to the mathematical and algorithmic aspects of certified reduced basis methods for parametrized partial differential equations. Central aspects ranging from model construction, error estimation and computational efficiency to empirical interpolation methods are discussed in detail for coercive problems. More advanced aspects associated with time-dependent problems, non-compliant and non-coercive problems and applications with geometric variation are also discussed as examples.
“…a timely contribution to a field of growing importance. This carefully edited book presents a rich collection of chapters ranging from mathematical methodology to emerging applications. I recommend it to students as a rigorous and comprehensive presentation of simulation-based optimization and to researchers as an overview of recent advances and challenges in the field.” — Jorge Nocedal, Professor, Northwestern University.Many engineering and scientific problems in design, control, and parameter estimation can be formulated as optimization problems that are governed by partial differential equations (PDEs). The complexities of the PDEs—and the requirement for rapid solution—pose significant difficulties. A particularly challenging class of PDE-constrained optimization problems is characterized by the need for real-time solution, i.e., in time scales that are sufficiently rapid to support simulation-based decision making. Real-Time PDE-Constrained Optimization, the first book devoted to real-time optimization for systems governed by PDEs, focuses on new formulations, methods, and algorithms needed to facilitate real-time, PDE-constrained optimization. In addition to presenting state-of-the-art algorithms and formulations, the text illustrates these algorithms with a diverse set of applications that includes problems in the areas of aerodynamics, biology, fluid dynamics, medicine, chemical processes, homeland security, and structural dynamics. Despite difficulties, there is a pressing need to capitalize on continuing advances in computing power to develop optimization methods that will replace simple rule-based decision making with optimized decisions based on complex PDE simulations. Audience The book is aimed at readers who have expertise in simulation and are interested in incorporating optimization into their simulations, who have expertise in numerical optimization and are interested in adapting optimization methods to the class of infinite-dimensional simulation problems, or who have worked in “offline” optimization contexts and are interested in moving to “online” optimization.Contents Preface; Part I: Concepts and Properties of Real-Time, Online Strategies. Chapter 1: Constrained Optimal Feedback Control of Systems Governed by Large Differential Algebraic Equations; Chapter 2: A Stabilizing Real-Time Implementation of Nonlinear Model Predictive Control; Chapter 3: Numerical Feedback Controller Design for PDE Systems Using Model Reduction: Techniques and Case Studies; Chapter 4: Least-Squares Finite Element Method for Optimization and Control Problems; Part II: Fast PDE-Constrained Optimization Solvers. Chapter 5: Space-Time Multigrid Methods for Solving Unsteady Optimal Control Problems; Chapter 6: A Time-Parallel Implicit Methodology for the Near-Real-Time Solution of Systems of Linear Oscillators; Chapter 7: Generalized SQP Methods with “Parareal” Time-Domain Decomposition for Time-Dependent PDE-Constrained Optimization; Chapter 8: Simultaneous Pseudo-Timestepping for State-Constrained Optimization Problems in Aerodynamics; Chapter 9: Digital Filter Stepsize Control in DASPK and Its Effect on Control Optimization Performance; Part III: Reduced Order Modeling. Chapter 10: Certified Rapid Solution of Partial Differential Equations for Real-Time Parameter Estimation and Optimization; Chapter 11: Model Reduction for Large-Scale Applications in Computational Fluid Dynamics; Chapter 12: Suboptimal Feedback Control of Flow Separation by POD Model Reduction; Part IV: Applications. Chapter 13: A Combined Shape-Newton and Topology Optimization Technique in Real-Time Image Segmentation; Chapter 14: COFIR: Coarse and Fine Image Registration; Chapter 15: Real-Time, Large Scale Optimization of Water Network Systems Using a Sub-domain Approach; Index.
This book provides a basic introduction to reduced basis (RB) methods for problems involving the repeated solution of partial differential equations (PDEs) arising from engineering and applied sciences, such as PDEs depending on several parameters and PDE-constrained optimization. The book presents a general mathematical formulation of RB methods, analyzes their fundamental theoretical properties, discusses the related algorithmic and implementation aspects, and highlights their built-in algebraic and geometric structures. More specifically, the authors discuss alternative strategies for constructing accurate RB spaces using greedy algorithms and proper orthogonal decomposition techniques, investigate their approximation properties and analyze offline-online decomposition strategies aimed at the reduction of computational complexity. Furthermore, they carry out both a priori and a posteriori error analysis. The whole mathematical presentation is made more stimulating by the use of representative examples of applicative interest in the context of both linear and nonlinear PDEs. Moreover, the inclusion of many pseudocodes allows the reader to easily implement the algorithms illustrated throughout the text. The book will be ideal for upper undergraduate students and, more generally, people interested in scientific computing. All these pseudocodes are in fact implemented in a MATLAB package that is freely available at https://github.com/redbkit
The special volume offers a global guide to new concepts and approaches concerning the following topics: reduced basis methods, proper orthogonal decomposition, proper generalized decomposition, approximation theory related to model reduction, learning theory and compressed sensing, stochastic and high-dimensional problems, system-theoretic methods, nonlinear model reduction, reduction of coupled problems/multiphysics, optimization and optimal control, state estimation and control, reduced order models and domain decomposition methods, Krylov-subspace and interpolatory methods, and applications to real industrial and complex problems. The book represents the state of the art in the development of reduced order methods. It contains contributions from internationally respected experts, guaranteeing a wide range of expertise and topics. Further, it reflects an important effor t, carried out over the last 12 years, to build a growing research community in this field. Though not a textbook, some of the chapters can be used as reference materials or lecture notes for classes and tutorials (doctoral schools, master classes).
Many physical, chemical, biomedical, and technical processes can be described by partial differential equations or dynamical systems. In spite of increasing computational capacities, many problems are of such high complexity that they are solvable only with severe simplifications, and the design of efficient numerical schemes remains a central research challenge. This book presents a tutorial introduction to recent developments in mathematical methods for model reduction and approximation of complex systems. Model Reduction and Approximation: Theory and Algorithms contains three parts that cover (I) sampling-based methods, such as the reduced basis method and proper orthogonal decomposition, (II) approximation of high-dimensional problems by low-rank tensor techniques, and (III) system-theoretic methods, such as balanced truncation, interpolatory methods, and the Loewner framework. It is tutorial in nature, giving an accessible introduction to state-of-the-art model reduction and approximation methods. It also covers a wide range of methods drawn from typically distinct communities (sampling based, tensor based, system-theoretic).?? This book is intended for researchers interested in model reduction and approximation, particularly graduate students and young researchers.
High-dimensional spatio-temporal partial differential equations are a major challenge to scientific computing of the future. Up to now deemed prohibitive, they have recently become manageable by combining recent developments in numerical techniques, appropriate computer implementations, and the use of computers with parallel and even massively parallel architectures. This opens new perspectives in many fields of applications. Kinetic plasma physics equations, the many body Schrodinger equation, Dirac and Maxwell equations for molecular electronic structures and nuclear dynamic computations, options pricing equations in mathematical finance, as well as Fokker-Planck and fluid dynamics equations for complex fluids, are examples of equations that can now be handled. The objective of this volume is to bring together contributions by experts of international stature in that broad spectrum of areas to confront their approaches and possibly bring out common problem formulations and research directions in the numerical solutions of high-dimensional partial differential equations in various fields of science and engineering with special emphasis on chemistry and physics. Information for our distributors: Titles in this series are co-published with the Centre de Recherches Mathematiques.
This volume is a selection of contributions offered by friends, collaborators, past students in memory of Enrico Magenes. The first part gives a wide historical perspective of Magenes' work in his 50-year mathematical career; the second part contains original research papers, and shows how ideas, methods, and techniques introduced by Magenes and his collaborators still have an impact on the current research in Mathematics.
The book contains a selection of high quality papers, chosen among the best presentations during the International Conference on Spectral and High-Order Methods (2009), and provides an overview of the depth and breadth of the activities within this important research area. The carefully reviewed selection of the papers will provide the reader with a snapshot of state-of-the-art and help initiate new research directions through the extensive bibliography.