Download Free Reliable Control By Switching Control Strategies Book in PDF and EPUB Free Download. You can read online Reliable Control By Switching Control Strategies and write the review.

This book presents the most recent state-of-the-art algorithms on robust environmental perception and reliability control for intelligent vehicle systems. By integrating object detection, semantic segmentation, trajectory prediction, multi-object tracking, multi-sensor fusion, and reliability control in a systematic way, this book is aimed at guaranteeing that intelligent vehicles can run safely in complex road traffic scenes. Adopts the multi-sensor data fusion-based neural networks to environmental perception fault tolerance algorithms, solving the problem of perception reliability when some sensors fail by using data redundancy. Presents the camera-based monocular approach to implement the robust perception tasks, which introduces sequential feature association and depth hint augmentation, and introduces seven adaptive methods. Proposes efficient and robust semantic segmentation of traffic scenes through real-time deep dual-resolution networks and representation separation of vision transformers. Focuses on trajectory prediction and proposes phased and progressive trajectory prediction methods that is more consistent with human psychological characteristics, which is able to take both social interactions and personal intentions into account. Puts forward methods based on conditional random field and multi-task segmentation learning to solve the robust multi-object tracking problem for environment perception in autonomous vehicle scenarios. Presents the novel reliability control strategies of intelligent vehicles to optimize the dynamic tracking performance and investigates the completely unknown autonomous vehicle tracking issues with actuator faults.
This book approaches its subject matter in a way that provides Lyapunov function analysis and event-triggered design methods for switched dynamic systems in terms of sampled-data control, hysteresis switching control, and fault-tolerant control. This book presents several novel design methods on event-triggered control of switched linear systems, in which the events inclusively consist of not only switching itself but events occurring as the switched systems evolve. The features of our approaches lie in threefold: i) In the framework of sampled-data control, a bond between the sampling period and the average dwell time of the asynchronous switched linear neutral systems is revealed, with which stabilization conditions are derived for periodic sampling and event-triggered sampling mechanisms, respectively. ii) New event-triggered control strategies are proposed for switched linear systems and switched delay systems including switched neutral systems. The Zeno phenomenon can be excluded easily since the constant threshold can guarantee the existence of minimum positive lower bound between two continuous sampling intervals. iii). Two new fault-tolerant control methods are presented for switched cascade systems, with structural uncertainties existing in both system matrices and input matrices of the linear subsystems, by using the average dwell-time techniques. The proposed control design works on both the switched systems with actuator faults and its nominal systems (i.e., without actuator faults) without necessarily changing any structures and/or parameters of the proposed controllers. This book presents several systematical analysis and design methods for event-triggered control of switched systems in terms of the Lyapunov-based stability. It is of great significance to theoretical research and practical applications for switched systems. The book provides a unified framework of sampled-data control, including periodic sampled-data control and event-triggered control, and fault-tolerant control of switched systems. It serves as a useful book for researchers and graduate students who are interested in knowing the state of the art of analysis and synthesis of switched systems. In addition, it is also a useful source of up-to-date design methods for researchers who study switched dynamic systems and graduate students of control theory and control engineering.
This edited book introduces readers to new analytical techniques and controller design schemes used to solve the emerging “hottest” problems in dynamic control systems and networks. In recent years, the study of dynamic systems and networks has faced major changes and challenges with the rapid advancement of IT technology, accompanied by the 4th Industrial Revolution. Many new factors that now have to be considered, and which haven’t been addressed from control engineering perspectives to date, are naturally emerging as the systems become more complex and networked. The general scope of this book includes the modeling of the system itself and uncertainty elements, examining stability under various criteria, and controller design techniques to achieve specific control objectives in various dynamic systems and networks. In terms of traditional stability matters, this includes the following special issues: finite-time stability and stabilization, consensus/synchronization, fault-tolerant control, event-triggered control, and sampled-data control for classical linear/nonlinear systems, interconnected systems, fractional-order systems, switched systems, neural networks, and complex networks. In terms of introducing graduate students and professional researchers studying control engineering and applied mathematics to the latest research trends in the areas mentioned above, this book offers an excellent guide.
Discover the deep insights into the operation, modulation, and control strategies of multilevel converters, alongside their recent applications in variable speed drives, renewable energy generation, and power systems. Multilevel converters have gained attention in recent years for medium/high voltage and high power industrial and residential applications. The main advantages of multilevel converters over two level converters include less voltage stress on power semiconductors, low dv/dt, low common voltage, reduced electromagnetic interference, and low total harmonics distortion, among others. Better output power quality is ensured by increasing the number of levels in the synthesized output voltage waveform. Several multilevel topologies have been reported in the literature, such as neutral point clamped (NPC), flying capacitor (FC), cascaded H-bridge (CHB), hybrid cascaded H-bridge, asymmetrical cascaded H-bridge, modular multilevel converters (MMC), active neutral point clamped converters (ANPC), and packed U-cell type converters and various reduced device counts and a reduced number of source-based topologies have been proposed in literature. The multilevel converter, although a proven and enabling technology, still presents numerous challenges in topologies, modulation, and control, as well as in need-based applications. Since multilevel converters offer a wide range of possibilities, research and development in the areas of multilevel converter topologies, modulation, and control in various applications are still growing. To further improve multilevel converter energy efficiency, reliability, power density, and cost, many research groups across the world are working to broaden the application areas of multilevel converters and make them more attractive and competitive compared to classic topologies. Multilevel Converters intends to provide deep insight about multilevel converter operation, modulation, and control strategies and various recent applications of multilevel converters such as in variable speed drives, renewable energy generation, and power systems.
Nowadays, power electronics is an enabling technology in the energy development scenario. Furthermore, power electronics is strictly linked with several fields of technological growth, such as consumer electronics, IT and communications, electrical networks, utilities, industrial drives and robotics, and transportation and automotive sectors. Moreover, the widespread use of power electronics enables cost savings and minimization of losses in several technology applications required for sustainable economic growth. The topologies of DC–DC power converters and switching converters are under continuous development and deserve special attention to highlight the advantages and disadvantages for use increasingly oriented towards green and sustainable development. DC–DC converter topologies are developed in consideration of higher efficiency, reliable control switching strategies, and fault-tolerant configurations. Several types of switching converter topologies are involved in isolated DC–DC converter and nonisolated DC–DC converter solutions operating in hard-switching and soft-switching conditions. Switching converters have applications in a broad range of areas in both low and high power densities. The articles presented in the Special Issue titled "Advanced DC-DC Power Converters and Switching Converters" consolidate the work on the investigation of the switching converter topology considering the technological advances offered by innovative wide-bandgap devices and performance optimization methods in control strategies used.
Provides fundamentals of reliability engineering and illustrates practical applications in the area of parallel/distributed systems (Multistage Interconnection Networks) The first part of the book (chapters 1–5) introduces the concept of reliability engineering, elements of probability theory, probability distributions, availability, and data analysis. The second part of the book (chapters 6–11) provides an overview of parallel/distributed computing, network design considerations, classification of multistage interconnection networks, network reliability evaluation methods, and reliability analysis of multistage interconnection networks including reliability prediction of distributed systems using Monte Carlo method. Fundamentals of Reliability Engineering meets the increasing demand for knowledge tools that practicing reliability professionals can use to optimize their reliability decisions. Reliability prediction is important as it determines the usability and efficiency of the network to provide services. Reliability evaluation methods discussed in this book can be applied to analyze the reliability of any other systems. As an example, reliability analysis of distributed systems that consist of layers of switching elements connected together in a predefined topology that provide the connectivity between the set of processors and the set of memory modules, are presented.
The book focuses on control and communication for demand response with thermostatically controlled loads. This is achieved by providing in-depth study on a number of major topics such as load control, optimization strategies, communication network model, resource allocation methods, system design, implementation, and performance evaluation. Two major cost modeling methods are established in detail, which are cost modeling based on Taguchi Loss Function and cost modeling based on regulation errors. The comprehensive and systematic treatment of issues in optimization strategies and resource allocation for demand response are one of the major features of the book, which is particularly suited for readers who are interested to learn solutions in control and communication. The book can benefit researchers, engineers, and graduate students in fields of control theory, automation, communication engineering and economics, etc.
This book constitutes the strictly refereed post-proceedings of the 5th International Hybrid Systems Workshop held in Notre Dame, Indiana, USA in September 1998. The 23 revised full papers presented in the book have gone through two rounds of thorough reviewing and revision. The volume presents state-of-the-art research results and particularly addresses such areas as program verification, concurrent and distributed processes, logic programming, logics of programs, discrete event simulation, calculus of variations, optimization, differential geometry, Lie algebras, automata theory, dynamical systems, etc.