Download Free Reliability Robust Design In Automotive Engineering Book in PDF and EPUB Free Download. You can read online Reliability Robust Design In Automotive Engineering and write the review.

Collection of papers from the "Reliability & Robust Design in Automotive Engineering" session of the SAE 2006 World Congress, held April 3-6 in Detroit, Michigan.
Based on deep theoretical as well as practical experience in Reliability and Quality Sciences, Robust Design Methodology for Reliability constructively addresses practical reliability problems. It offers a comprehensive design theory for reliability, utilizing robust design methodology and six sigma frameworks. In particular, the relation between un-reliability and variation and uncertainty is explored and reliability improvement measures in early product development stages are suggested. Many companies today utilise design for Six Sigma (DfSS) for strategic improvement of the design process, but often without explicitly describing the reliability perspective; this book explains how reliability design can relate to and work with DfSS and illustrates this with real–world problems. The contributors advocate designing for robustness, i.e. insensitivity to variation in the early stages of product design development. Methods for rational treatment of uncertainties in model assumptions are also presented. This book promotes a new approach to reliability thinking that addresses the design process and proneness to failure in the design phase via sensitivity to variation and uncertainty; includes contributions from both academics and industry practitioners with a broad scope of expertise, including quality science, mathematical statistics and reliability engineering; takes the innovative approach of promoting the study of variation and uncertainty as a basis for reliability work; includes case studies and illustrative examples that translate the theory into practice. Robust Design Methodology for Reliability provides a starting point for new thinking in practical reliability improvement work that will appeal to advanced designers and reliability specialists in academia and industry including fatigue engineers, product development and process/ quality professionals, especially those interested in and/ or using the DfSS framework.
Researchers in the engineering industry and academia are making important advances on reliability-based design and modeling of uncertainty when data is limited. Non deterministic approaches have enabled industries to save billions by reducing design and warranty costs and by improving quality. Considering the lack of comprehensive and defini
Historically, the reliability growth process has been thought of, and treated as, a reactive approach to growing reliability based on failures "discovered" during testing or, most unfortunately, once a system/product has been delivered to a customer. As a result, many reliability growth models are predicated on starting the reliability growth process at test time "zero", with some initial level of reliability (usually in the context of a time-based measure such as Mean Time Between Failure (MTBF)). Time "zero" represents the start of testing, and the initial reliability of the test item is based on its inherent design. The problem with this approach, still predominant today, is that it ignores opportunities to grow reliability during the design of a system or product, i.e., opportunities to go into reliability growth testing with a higher initial inherent reliability at time zero. In addition to the traditional approaches to reliability growth during test, this book explores the activities and opportunities that can be leveraged to promote and achieve reliability growth during the design phase of the overall system life cycle. The ability to do so as part of an integrated, proactive design environment has significant implications for developing and delivering reliable items quickly, on time and within budget. This book offers new definitions of how failures can be characterized, and how those new definitions can be used to develop metrics that will quantify how effective a Design for Reliability (DFR) process is in (1) identifying failure modes and (2) mitigating their root failure causes. Reliability growth can only occur in the presence of both elements.
In the current, increasingly aggressive business environment, crucial decisions about product design often involve significant uncertainty. Highlighting the competitive advantage available from using risk-based reliability design, Engineering Design Reliability Applications: For the Aerospace, Automotive, and Ship Industries provides an overview of
Next Generation HALT and HASS presents a major paradigm shift from reliability prediction-based methods to discovery of electronic systems reliability risks. This is achieved by integrating highly accelerated life test (HALT) and highly accelerated stress screen (HASS) into a physics-of-failure-based robust product and process development methodology. The new methodologies challenge misleading and sometimes costly mis-application of probabilistic failure prediction methods (FPM) and provide a new deterministic map for reliability development. The authors clearly explain the new approach with a logical progression of problem statement and solutions. The book helps engineers employ HALT and HASS by illustrating why the misleading assumptions used for FPM are invalid. Next, the application of HALT and HASS empirical discovery methods to quickly find unreliable elements in electronics systems gives readers practical insight to the techniques. The physics of HALT and HASS methodologies are highlighted, illustrating how they uncover and isolate software failures due to hardware-software interactions in digital systems. The use of empirical operational stress limits for the development of future tools and reliability discriminators is described. Key features: * Provides a clear basis for moving from statistical reliability prediction models to practical methods of insuring and improving reliability. * Challenges existing failure prediction methodologies by highlighting their limitations using real field data. * Explains a practical approach to why and how HALT and HASS are applied to electronics and electromechanical systems. * Presents opportunities to develop reliability test discriminators for prognostics using empirical stress limits. * Guides engineers and managers on the benefits of the deterministic and more efficient methods of HALT and HASS. * Integrates the empirical limit discovery methods of HALT and HASS into a physics of failure based robust product and process development process.
Vehicle reliability problems continue to be the news because of major vehicle recalls from several manufacturers. This book includes 40 SAE technical papers, published from 2007 through 2010, that describe the latest research on automotive electronics reliability technology. This book will help engineers and researchers focus on the design strategies being used to minimize electronics reliability problems, and how to test and verify those strategies. After an overview of durability, risk assessment, and failure mechanisms, this book focuses on state-of-the-art techniques for reliability-based design, and reliability testing and verification. Topics include: powertrain control monitoring distributed automotive embedded systems model-based design x-by-wire systems battery durability design verification fault tree analysis The book also includes editor Ronald K. Jurgen’s introduction ,“Striving for Maximum Reliability in a Highly Complex Electronic Environment”, and a concluding section on the future of electronics reliability, including networking technology, domain control units, the use of AUTOSAR, and embedded software.
Robust Design is the procedure used by design engineers to reduce the effects of order to produce the highest quality products possible. This book includes real life case studies focusing on mechanical, chemical and imaging design that illustrate potential problems and their solutions and offers WinRobust Lite software and practice problems.
The book presents a systematic and efficient method to design high quality / reliability and high performance products / processes at low cost. Contains case studies from diverse engineering fields to describe Robust Design / Taguchi method.Some topics covered are: orthogonal arrays, Signal-to-Noise ratios as design quality metric, computer-aided robust design techniques, and more.