Download Free Reliability Modelling And Analysis In Discrete Time Book in PDF and EPUB Free Download. You can read online Reliability Modelling And Analysis In Discrete Time and write the review.

Reliability Modelling and Analysis in Discrete Time provides an overview of the probabilistic and statistical aspects connected with discrete reliability systems. This engaging book discusses their distributional properties and dependence structures before exploring various orderings associated between different reliability structures. Though clear explanations, multiple examples, and exhaustive coverage of the basic and advanced topics of research in this area, the work gives the reader a thorough understanding of the theory and concepts associated with discrete models and reliability structures. A comprehensive bibliography assists readers who are interested in further research and understanding. Requiring only an introductory understanding of statistics, this book offers valuable insight and coverage for students and researchers in Probability and Statistics, Electrical Engineering, and Reliability/Quality Engineering. The book also includes a comprehensive bibliography to assist readers seeking to delve deeper. - Includes a valuable introduction to Reliability Theory before covering advanced topics of research and real world applications - Features an emphasis on the mathematical theory of reliability modeling - Provides many illustrative examples to foster reader understanding
Computing systems are of growing importance because of their wide use in many areas including those in safety-critical systems. This book describes the basic models and approaches to the reliability analysis of such systems. An extensive review is provided and models are categorized into different types. Some Markov models are extended to the analysis of some specific computing systems such as combined software and hardware, imperfect debugging processes, failure correlation, multi-state systems, heterogeneous subsystems, etc. One of the aims of the presentation is that based on the sound analysis and simplicity of the approaches, the use of Markov models can be better implemented in the computing system reliability.
The monographic volume addresses, in a systematic and comprehensive way, the state-of-the-art dependability (reliability, availability, risk and safety, security) of systems, using the Artificial Intelligence framework of Probabilistic Graphical Models (PGM). After a survey about the main concepts and methodologies adopted in dependability analysis, the book discusses the main features of PGM formalisms (like Bayesian and Decision Networks) and the advantages, both in terms of modeling and analysis, with respect to classical formalisms and model languages.Methodologies for deriving PGMs from standard dependability formalisms will be introduced, by pointing out tools able to support such a process. Several case studies will be presented and analyzed to support the suitability of the use of PGMs in the study of dependable systems.
As our modern information-age society grows in complexity both in terms of embedded systems and applications, the problems and challenges in reliability become ever more complex. Bringing together many of the leading experts in the field, this volume presents a broad picture of current research on system modeling and optimization in reliability and its applications.The book comprises twenty-three chapters organized into four parts: Reliability Modeling, Software Quality Engineering, Software Reliability, and Maintenance and Inspection Policies. These sections cover a wide range of important topics, including system reliability modeling, optimization, software reliability and quality, maintenance theory and inspection, reliability failure analysis, sampling plans and schemes, software development processes and improvement, stochastic process modeling, statistical distributions and analysis, fault-tolerant performance, software measurements and cost effectiveness, queueing theory and applications, system availability, reliability of repairable systems, testing sampling inspection, software capability maturity model, accelerated life modeling, statistical control, and HALT testing.
"Markov modeling has long been accepted as a fundamental and powerful technique for the fault tolerance analysis of mission-critical applications. However, the elaborate computations required have often made Markov modeling too time-consuming to be of practical use on these complex systems. With this hands-on tool, designers can use the Markov modeling technique to analyze safety, reliability, maintainability, and cost-effectiveness factors in the full range of complex systems in use today. Featuring ground-breaking simulation software and a comprehensive reference manual, MARKOV MODELING FOR RELIABILITY ANALYSIS helps system designers surmount the mathematical computations that have previously prevented effective reliability analysis. The text and software compose a valuable self-study tool that is complete with detailed explanations, examples, and a library of Markov models that can be used for experiments and as derivations for new simulation models. The book details how these analyses are conducted, while providing hands-on instruction on how to develop reliability models for the full range of system configurations. Computer-Aided Rate Modeling and Simulation (CARMS) software is an integrated modeling tool that includes a diagram-based environment for model setup, a spreadsheet like interface for data entry, an expert system link for automatic model construction, and an interactive graphic interface for displaying simulation results."
Do you need to know what technique to use to evaluate the reliability of an engineered system? This self-contained guide provides comprehensive coverage of all the analytical and modeling techniques currently in use, from classical non-state and state space approaches, to newer and more advanced methods such as binary decision diagrams, dynamic fault trees, Bayesian belief networks, stochastic Petri nets, non-homogeneous Markov chains, semi-Markov processes, and phase type expansions. Readers will quickly understand the relative pros and cons of each technique, as well as how to combine different models together to address complex, real-world modeling scenarios. Numerous examples, case studies and problems provided throughout help readers put knowledge into practice, and a solutions manual and Powerpoint slides for instructors accompany the book online. This is the ideal self-study guide for students, researchers and practitioners in engineering and computer science.
Learn about the techniques used for evaluating the reliability and availability of engineered systems with this comprehensive guide.
The safe and reliable operation of technical systems is of great significance for the protection of human life and health, the environment, and of the vested economic value. The correct functioning of those systems has a profound impact also on production cost and product quality. The early detection of faults is critical in avoiding performance degradation and damage to the machinery or human life. Accurate diagnosis then helps to make the right decisions on emergency actions and repairs. Fault detection and diagnosis (FDD) has developed into a major area of research, at the intersection of systems and control engineering, artificial intelligence, applied mathematics and statistics, and such application fields as chemical, electrical, mechanical and aerospace engineering. IFAC has recognized the significance of FDD by launching a triennial symposium series dedicated to the subject. The SAFEPROCESS Symposium is organized every three years since the first symposium held in Baden-Baden in 1991. SAFEPROCESS 2006, the 6th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes was held in Beijing, PR China. The program included three plenary papers, two semi-plenary papers, two industrial talks by internationally recognized experts and 258 regular papers, which have been selected out of a total of 387 regular and invited papers submitted. * Discusses the developments and future challenges in all aspects of fault diagnosis and fault tolerant control * 8 invited and 36 contributed sessions included with a special session on the demonstration of process monitoring and diagnostic software tools
This book focuses on software fault detection and correction processes, presenting 5 different paired models introduced over the last decade and discussing their applications, in particular to determining software release time. The first work incorporates the testing effort function and the fault introduction process into the paired fault detection and fault correction models. The second work incorporates fault dependency, while the third adopts a Markov approach for studying fault detection and correction processes. The fourth work considers the multi-release property of various software, and models fault detection and correction processes. The last work classifies faults into four types and models the fault-detection and correction processes. Enabling readers to familiarize themselves with how software reliability can be modeled when different factors need to be considered, and how the approaches can be used to analyze other systems, the book is important reference guide for researchers in the field of software reliability engineering and practitioners working on software projects. To gain the most from the book, readers should have a firm grasp of the fundamentals of the stochastic process.
Dependability and cost effectiveness are primarily seen as instruments for conducting international trade in the free market environment. These factors cannot be considered in isolation of each other. This handbook considers all aspects of performability engineering. The book provides a holistic view of the entire life cycle of activities of the product, along with the associated cost of environmental preservation at each stage, while maximizing the performance.