Download Free Reliability Engineering And Computational Intelligence Book in PDF and EPUB Free Download. You can read online Reliability Engineering And Computational Intelligence and write the review.

Computational intelligence is rapidly becoming an essential part of reliability engineering. This book offers a wide spectrum of viewpoints on the merger of technologies. Leading scientists share their insights and progress on reliability engineering techniques, suitable mathematical methods, and practical applications. Thought-provoking ideas are embedded in a solid scientific basis that contribute to the development the emerging field. This book is for anyone working on the most fundamental paradigm-shift in resilience engineering in decades. Scientists benefit from this book by gaining insight in the latest in the merger of reliability engineering and computational intelligence. Businesses and (IT) suppliers can find inspiration for the future, and reliability engineers can use the book to move closer to the cutting edge of technology.
This book offers insight into the current issues of the merger between reliability engineering and computational intelligence. The intense development of information technology allows for designing more complex systems as well as creating more detailed models of real-world systems which forces traditional reliability engineering approaches based on Boolean algebra, probability theory, and statistics to embrace the world of data science. The works deal with methodological developments as well as applications in the development of safe and reliable systems in various kinds of distribution networks, in the development of highly reliable healthcare systems, in finding weaknesses in systems with the human factor, or in reliability analysis of large information systems and other software solutions. In this book, experts from various fields of reliability engineering and computational intelligence present their view on the risks, the opportunities and the synergy between reliability engineering and computational intelligence that have been developed separately but in recent years have found a way to each other. The topics addressed include the latest advances in computing technology to improve the real lives of millions of people by increasing safety and reliability of various types of real-life systems by increasing the availability of software services, reducing the accident rate of means of transport, developing high reliable patient-specific health care, or generally, save cost and increase efficiency in the work and living environment. Though this book, the reader has access to professionals and researchers in the fields of reliability engineering and computational intelligence that share their experience in merging the two as well as an insight into the latest methods, concerns and application domains.
Power system reliability is the focus of intensive study due to its critical role in providing energy supply to modern society. This comprehensive book describes application of some new specific techniques: universal generating function method and its combination with Monte Carlo simulation and with random processes methods, Semi-Markov and Markov reward models and genetic algorithm. The book can be considered as complementary to power system reliability textbooks.
This volume includes chapters presenting applications of different metaheuristics in reliability engineering, including ant colony optimization, great deluge algorithm, cross-entropy method and particle swarm optimization. It also presents chapters devoted to cellular automata and support vector machines, and applications of artificial neural networks, a powerful adaptive technique that can be used for learning, prediction and optimization. Several chapters describe aspects of imprecise reliability and applications of fuzzy and vague set theory.
This volume deals with different computational intelligence (CI) techniques for solving real world power industry problems. It will be extremely helpful for the researchers as well as the practicing engineers in the power industry.
Foresight in an engineering business can make the difference between success and failure, and can be vital to the effective control of industrial systems. The authors of this book harness the power of intelligent technologies individually and in combination.
Computational Intelligence Techniques and Their Applications to Software Engineering Problems focuses on computational intelligence approaches as applicable in varied areas of software engineering such as software requirement prioritization, cost estimation, reliability assessment, defect prediction, maintainability and quality prediction, size estimation, vulnerability prediction, test case selection and prioritization, and much more. The concepts of expert systems, case-based reasoning, fuzzy logic, genetic algorithms, swarm computing, and rough sets are introduced with their applications in software engineering. The field of knowledge discovery is explored using neural networks and data mining techniques by determining the underlying and hidden patterns in software data sets. Aimed at graduate students and researchers in computer science engineering, software engineering, information technology, this book: Covers various aspects of in-depth solutions of software engineering problems using computational intelligence techniques Discusses the latest evolutionary approaches to preliminary theory of different solve optimization problems under software engineering domain Covers heuristic as well as meta-heuristic algorithms designed to provide better and optimized solutions Illustrates applications including software requirement prioritization, software cost estimation, reliability assessment, software defect prediction, and more Highlights swarm intelligence-based optimization solutions for software testing and reliability problems
Engineering practice often has to deal with complex systems of multiple variable and multiple parameter models almost always with strong non-linear coupling. The conventional analytical techniques-based approaches for describing and predicting the behaviour of such systems in many cases are doomed to failure from the outset, even in the phase of the construction of a more or less appropriate mathematical model. These approaches normally are too categorical in the sense that in the name of “modelling accuracy” they try to describe all the structural details of the real physical system to be modelled. This can significantly increase the intricacy of the model and may result in a enormous computational burden without achieving considerable improvement of the solution. The best paradigm exemplifying this situation may be the classic perturbation theory: the less significant the achievable correction, the more work has to be invested to obtain it. A further important component of machine intelligence is a kind of “structural uniformity” giving room and possibility to model arbitrary particular details a priori not specified and unknown. This idea is similar to the ready-to-wear industry, which introduced products, which can be slightly modified later on in contrast to tailor-made creations aiming at maximum accuracy from the beginning. These subsequent corrections can be carried out by machines automatically. This “learning ability” is a key element of machine intelligence. The past decade confirmed that the view of typical components of the present soft computing as fuzzy logic, neural computing, evolutionary computation and probabilistic reasoning are of complementary nature and that the best results can be applied by their combined application. Today, the two complementary branches of Machine Intelligence, that is, Artificial Intelligence and Computational Intelligence serve as the basis of Intelligent Engineering Systems. The huge number of scientific results published in Journal and conference proceedings worldwide substantiates this statement. The present book contains several articles taking different viewpoints in the field of intelligent systems.
This graduate textbook imparts the fundamentals of reliability and risk that can be connected mathematically and applied to problems in engineering and medical science and practice. The book is divided into eight chapters, the first three of which deal with basic fundamentals of probability theory and reliability methods. The fourth chapter illustrates simulation methods needed to solve complex problems. Chapters 5-7 explain reliability codes and system reliability (which uses the component reliabilities discussed in previous chapters). The book concludes in chapter 8 with an examination of applications of reliability within engineering and medical fields. Presenting a highly relevant competency for graduates entering product research and development, or facilities operations sectors, this text includes many examples and end of chapter study questions to maximize student comprehension. Explains concepts of reliability and risk estimation techniques in the context of medicine and engineering; Elucidates the interplay between reliability and risk from design to operation phases; Uses real world examples from engineering structures and medical devices and protocols; Adopts a lucid yet rigorous presentation of reliability and risk calculations; Reinforces students understanding of concepts covered with end-of-chapter exercises.