Download Free Reliability Assessment Of Large Electric Power Systems Book in PDF and EPUB Free Download. You can read online Reliability Assessment Of Large Electric Power Systems and write the review.

We are very pleased to be asked to co-author this book for a variety of reasons, one of which was that it gave us further opportunity to work together. The scope proposed was very wide with the only significant proviso being that the book should be in a mongraph-style and not a teaching text. This require ment has given us the opportunity to compile a wide range of relevant material relating to present-day knowledge and application in power system reliability. As many readers will be aware, we have collaborated in many ways over a relatively long period and have co-authored two other books on reliability evaluation. Both of these previous books were structured as teaching texts. This present book is not a discourse on "how to do reliability evaluation" but a discussion on "why it should be done and what can be done and achieved" and as such does not replace or conflict with the previous books. The three books are complementary and each enhances the others. The material contained in this book is not specifically original since it is based on information which we have published in other forms either jointly or as co authors with various other people, particularly our many research students. We sincerely acknowledge the important contributions made by all these students and colleagues. There are too many to mention individually in this preface but their names appear frequently in the references at the end of each chapter.
The application of quantitative reliability evaluation in electric power sys tems has now evolved to the point at which most utilities use these techniques in one or more areas of their planning, design, and operation. Most of the techniques in use are based on analytical models and resulting analytical evaluation procedures. Improvements in and availability of high-speed digi tal computers have created the opportunity to analyze many of these prob lems using stochastic simulation methods and over the last decade there has been increased interest in and use made of Monte Carlo simulation in quantitative power system reliability assessment. Monte Carlo simulation is not a new concept and recorded applications have existed for at least 50 yr. However, localized high-speed computers with large-capacity storage have made Monte Carlo simulation an available and sometimes preferable option for many power system reliability applications. Monte Carlo simulation is also an integral part of a modern undergrad uate or graduate course on reliability evaluation of general engineering systems or specialized areas such as electric power systems. It is hoped that this textbook will help formalize the many existing applications of Monte Carlo simulation and assist in their integration in teaching programs. This book presents the basic concepts associated with Monte Carlo simulation.
First Published in 1970. Routledge is an imprint of Taylor & Francis, an informa company.
Focusing on power systems reliability and generating unit commitments, which are essential in the design and evaluation of the electric power systems for planning, control, and operation, this informative volume covers the concepts of basic reliability engineering, such as power system spinning reserve, types of load curves and their objectives and benefits, the electric power exchange, and the system operation constraints. The author explains how the probability theory plays an important role in reliability applications and discusses the probability applications in electric power systems that led to the development of the mathematical models that are illustrated in the book. The algorithms that are presented throughout the chapters will help researchers and engineers to implement their own suitable programs where needed and will also be valuable for students. The Artificial Neural Networks (ANN) and Fuzzy Logic (FL) systems are discussed and a number of load estimation models are built for some cases, where their formulas are developed. A number of developed models are presented, including the Kronecker techniques, Fourth-Order Runge-Kutta, System Multiplication Method, or Adams Method; and components with different connections and different distributions are presented. A number of examples are explained showing how to build and evaluate power plants.
In response to new developments in the field, practical teaching experience, and readers' suggestions, the authors of the warmly received Reliablity Evaluation of Engineering Systems have updated and extended the work-providing extended coverage of fault trees and a more complete examination of probability distribution, among other things-without disturbing the original's concept, structure, or style.
This book presents essential methods and tools for research into the reliability of energy systems. It describes in detail the content setting, formalisation, and use of algorithms for assessing the reliability of modern, large, and complex electric power systems. The book uses a wealth of tables and illustrations to represent results and source information in a clear manner. It discusses the main operating conditions which affect the reliability of electric power systems, and describes corresponding computing tools which can help solve issues as they arise. Further, all methodologies presented here are demonstrated in numerical examples. Though primarily intended for researchers and practitioners in the field of electric power systems, the book will also benefit general readers interested in this area.
The importance of power system reliability is demonstrated when our electricity supply is disrupted, whether it decreases the comfort of our free time at home or causes the shutdown of our companies and results in huge economic deficits. The objective of Assessment of Power System Reliability is to contribute to the improvement of power system reliability. It consists of six parts divided into twenty chapters. The first part introduces the important background issues that affect power system reliability. The second part presents the reliability methods that are used for analyses of technical systems and processes. The third part discusses power flow analysis methods, because the dynamic aspect of a power system is an important part of related reliability assessments. The fourth part explores various aspects of the reliability assessment of power systems and their parts. The fifth part covers optimization methods. The sixth part looks at the application of reliability and optimization methods. Assessment of Power System Reliability has been written in straightforward language that continues into the mathematical representation of the methods. Power engineers and developers will appreciate the emphasis on practical usage, while researchers and advanced students will benefit from the simple examples that can facilitate their understanding of the theory behind power system reliability and that outline the procedure for application of the presented methods.
"Risk Assessment of Power Systems closes the gap between risk theory and real-world application. As a leading authority in power system risk evaluation for more than fifteen years and the author of a considerable number of papers and more than fifty technical reports on power system risk and reliability evaluation, Wenyuan Li is uniquely qualified to present this material. Following the models and methods developed from the author's hands-on experience, readers learn how to evaluate power system risk in planning, design, operations, and maintenance activities to keep risk at targeted levels."--BOOK JACKET.
A clear explanation of the technology for producing and delivering electricity Electric Power Systems explains and illustrates how the electric grid works in a clear, straightforward style that makes highly technical material accessible. It begins with a thorough discussion of the underlying physical concepts of electricity, circuits, and complex power that serves as a foundation for more advanced material. Readers are then introduced to the main components of electric power systems, including generators, motors and other appliances, and transmission and distribution equipment such as power lines, transformers, and circuit breakers. The author explains how a whole power system is managed and coordinated, analyzed mathematically, and kept stable and reliable. Recognizing the economic and environmental implications of electric energy production and public concern over disruptions of service, this book exposes the challenges of producing and delivering electricity to help inform public policy decisions. Its discussions of complex concepts such as reactive power balance, load flow, and stability analysis, for example, offer deep insight into the complexity of electric grid operation and demonstrate how and why physics constrains economics and politics. Although this survival guide includes mathematical equations and formulas, it discusses their meaning in plain English and does not assume any prior familiarity with particular notations or technical jargon. Additional features include: * A glossary of symbols, units, abbreviations, and acronyms * Illustrations that help readers visualize processes and better understand complex concepts * Detailed analysis of a case study, including a Web reference to the case, enabling readers to test the consequences of manipulating various parameters With its clear discussion of how electric grids work, Electric Power Systems is appropriate for a broad readership of professionals, undergraduate and graduate students, government agency managers, environmental advocates, and consumers.
An effective reliability programme is an essential component of every product's design, testing and efficient production. From the failure analysis of a microelectronic device to software fault tolerance and from the accelerated life testing of mechanical components to hardware verification, a common underlying philosophy of reliability applies. Defining both fundamental and applied work across the entire systems reliability arena, this state-of-the-art reference presents methodologies for quality, maintainability and dependability. Featuring: Contributions from 60 leading reliability experts in academia and industry giving comprehensive and authoritative coverage. A distinguished international Editorial Board ensuring clarity and precision throughout. Extensive references to the theoretical foundations, recent research and future directions described in each chapter. Comprehensive subject index providing maximum utility to the reader. Applications and examples across all branches of engineering including IT, power, automotive and aerospace sectors. The handbook's cross-disciplinary scope will ensure that it serves as an indispensable tool for researchers in industrial, electrical, electronics, computer, civil, mechanical and systems engineering. It will also aid professional engineers to find creative reliability solutions and management to evaluate systems reliability and to improve processes. For student research projects it will be the ideal starting point whether addressing basic questions in communications and electronics or learning advanced applications in micro-electro-mechanical systems (MEMS), manufacturing and high-assurance engineering systems.