Download Free Reliability And Product Assurance Book in PDF and EPUB Free Download. You can read online Reliability And Product Assurance and write the review.

Are you buying a car or smartphone or dishwasher? We bet long-term, trouble-free operation (i.e., high reliability) is among the top three things you look for. Reliability problems can lead to everything from minor inconveniences to human disasters. Ensuring high reliability in designing and building manufactured products is principally an engineering challenge–but statistics plays a key role. Achieving Product Reliability explains in a non-technical manner how statistics is used in modern product reliability assurance. Features: Describes applications of statistics in reliability assurance in design, development, validation, manufacturing, and field tracking. Uses real-life examples to illustrate key statistical concepts such as the Weibull and lognormal distributions, hazard rate, and censored data. Demonstrates the use of graphical tools in such areas as accelerated testing, degradation data modeling, and repairable systems data analysis. Presents opportunities for profitably applying statistics in the era of Big Data and Industrial Internet of Things (IIoT) utilizing, for example, the instantaneous transmission of large quantities of field data. Whether you are an intellectually curious citizen, student, manager, budding reliability professional, or academician seeking practical applications, Achieving Product Reliability is a great starting point for a big-picture view of statistics in reliability assurance. The authors are world-renowned experts on this topic with extensive experience as company-wide statistical resources for a global conglomerate, consultants to business and government, and researchers of statistical methods for reliability applications.
Due to global competition, safety regulations, and other factors, manufacturers are increasingly pressed to create products that are safe, highly reliable, and of high quality. Engineers and quality assurance professionals need a cross-disciplinary understanding of these topics in order to ensure high standards in the design and manufacturing proce
Traditionally, the way to test a product's reliability was to build it--and then try to break it. As systems and technologies improved, TAAF (Test, Analyze and Fix) methodologies were developed and adopted. In today's global economy, with its short, technologically-intense product life cycles, TAAF cannot suffice. Reliability can no longer be a step or a series of steps in product development; it is something that needs to be acknowledged up front and built into the product from its very conception. Reliability, in other words, must be 'designed in.' Product developers now have many tools--software and hardware--at their disposal for building reliability in from the get go. From the organizational point of view, what better way to design in reliability than to make designers themselves responsible for the reliability of their designs? As "Mike Silverman" explains in "How Reliable is Your Product?," this is why the role of the reliability engineer is changing to one of mentor. Product developers are now responsible for going out and finding the best testing tools and then training the designers on their use, so that designers factor and build in reliability at every stage of product design. Mike has focused on reliability throughout his 25-year career, and has observed the position of reliability in the organization evolve. In this book, he condenses his expertise and experience into a volume of immense practical worth to the engineering and engineering management communities including designers, manufacturing engineers and reliability/quality engineers. Among other things, Mike discusses how reliability fits, or should fit, within the product design cycle. He provides a high-level overview of reliability techniques available to engineers today. He lucidly discusses the design of experiments and the role of failure management. With case studies and narratives from personal experience, Mike discusses optimal ways to utilize different reliability techniques. He highlights common errors of judgment, missteps and sub-optimal decisions that are often made within organizations on the path to total reliability. With"How Reliable is Your Product?" "Mike Silverman" has delivered what few have done before--a comprehensive yet succinct overview of the field of reliability engineering and testing. Engineers and engineering managers will find much in this book of immediate, practical value.
The objective of Product Assurance (PA) is to ensure that products accomplish their defined mission needs in a safe, available and reliable way. PA participants are responsible for failure-proofing missions by ensuring that the materials, mechanical parts, electrical components and processes used to assemble an End-Unit will be fit for purpose over the entire life of a mission. They do this by providing engineering support to all company activities, verifying compliance to PA requirements
High reliability, maintainability, and safety are expected from complex equipment and systems. To build these characteristics into an item, failure rate and failure mode analyses have to be performed early in the design phase, starting at the com ponent level, and have to be supported by a set of design guidelines for reliability and maintainability as well as by extensive design reviews. Before production, qualification tests of prototypes must ensure that quality and reliability targets have been reached. In the production phase, processes and procedures have to be selec ted and monitored to assure the required quality level. For many systems, availabi lity requirements must also be satisfied. In these cases, stochastic processes can be used to investigate and optimize availability, including logistical support. This book presents the state of the art of the methods and procedures necessary for a cost and time effective quality and reliability assurance during the design and production of equipment and systems. It takes into consideration that: 1. Quality and reliability assurance of complex equipment and systems requires that all engineers involved in a project undertake a set of specific activities from the definition to the operating phase, which are performed concurrently to achieve the best performance, quality, and reliability for given cost and time schedule targets.