Download Free Reliability And Materials Issues Of Iii V And Ii Vi Semiconductor Optical And Electrical Devices And Materials Ii Book in PDF and EPUB Free Download. You can read online Reliability And Materials Issues Of Iii V And Ii Vi Semiconductor Optical And Electrical Devices And Materials Ii and write the review.

Symposium G, "Reliability and Materials Issues of III-V and II-VI Semiconductor Optical and Electron Devices and Materials II," was held April 9-13 at the 2012 MRS Spring Meeting in San Francisco, California. Achieving high reliability is a key issue for semiconductor optical and electrical devices and is as important as device performance for commercial application. Degradation of both optical and electrical devices is strongly related to the materials issues. A variety of material defects can occur during the device fabrication processes, i.e., crystal growth, impurity diffusion, ion-implantation, wet/dry etching, metallization, bonding, packaging, etc. This symposium presented state-of-the-art results on reliability and degradation of various semiconductor optical and electrical devices as well as their materials issues in thin-film growth, wafer processing, and device fabrication processes.
The development of electronic materials and particularly advances in semiconductor technology have played a central role in the electronics revolution by allowing the production of increasingly cheap and powerful computing equipment and advanced telecommunications devices. This Concise Encyclopedia, which incorporates relevant articles from the acclaimed Encyclopedia of Materials Science and Engineering as well as newly commissioned articles, emphasizes the materials aspects of semiconductors and the technologies important in solid-state electronics. Growth of bulk crystals and epitaxial layers are discussed in the volume and coverage is included of defects and their effects on device behavior. Metallization and passivation issues are also covered. Over 100 alphabetically arranged articles, written by world experts in the field, are each intended to serve as the first source of information on a particular aspect of electronic materials. The volume is extensively illustrated with photographs, diagrams and tables. A bibliography is provided at the end of each article to guide the reader to recent literature. A comprehensive system of cross-references, a three-level subject index and an alphabetical list of articles are included to aid readers in the abstraction of information.
Revised and fully updated, the Second Edition of this textbook offers a comprehensive explanation of the technology and physics of light-emitting diodes (LEDs) such as infrared, visible-spectrum, ultraviolet, and white LEDs made from III–V semiconductors. The elementary properties of LEDs such as electrical and optical characteristics are reviewed, followed by the analysis of advanced device structures. With nine additional chapters, the treatment of LEDs has been vastly expanded, including new material on device packaging, reflectors, UV LEDs, III–V nitride materials, solid-state sources for illumination applications, and junction temperature. Radiative and non-radiative recombination dynamics, methods for improving light extraction, high-efficiency and high-power device designs, white-light emitters with wavelength-converting phosphor materials, optical reflectors, and spontaneous recombination in resonant-cavity structures, are discussed in detail. Fields related to solid-state lighting such as human vision, photometry, colorimetry, and color rendering are covered beyond the introductory level provided in the first edition. The applications of infrared and visible spectrum LEDs in silica fiber, plastic fiber, and free-space communication are also discussed. Semiconductor material data, device design data, and analytic formulae governing LED operation are provided. With exercises, solutions and illustrative examples, this textbook will be of interest to scientists and engineers working on LEDs, and to graduate students in electrical engineering, applied physics, and materials science.
Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.
This book focuses on the progress in optoelectronic materials research and technologies, presenting reviews and original works on the theory, fabrication, characterization, and applications of optoelectronic materials. The chapters discuss preparation and properties of several optoelectronic materials, such as ZnO, SnO2, Zn1-XSnXO, BaTiO3, GaAs, GaP, ZnSe, and NaAlSi. The structural, optical, vibrational, and magnetic properties are discussed, in addition to transport and phase transformations.
"Semiconductor nanowires exhibit novel electronic and optical properties due to their unique one-dimensional structure and quantum confinement effects. In particular, III-V semiconductor nanowires have been of great scientific and technological interest fo"