Download Free Relativistic Electronic Transport Theory Book in PDF and EPUB Free Download. You can read online Relativistic Electronic Transport Theory and write the review.

Maintaining a practical perspective, Electronic Transport Theories: From Weakly to Strongly Correlated Materials provides an integrative overview and comprehensive coverage of electronic transport with pedagogy in view. It covers traditional theories, such as the Boltzmann transport equation and the Kubo formula, along with recent theories of transport in strongly correlated materials. The understood case of electronic transport in metals is treated first, and then transport issues in strange metals are reviewed. Topics discussed are: the Drude-Lorentz theory; the traditional Bloch-Boltzmann theory and the Grüneisen formula; the Nyquist theorem and its formulation by Callen and Welton; the Kubo formalism; the Langevin equation approach; the Wölfle-Götze memory function formalism; the Kohn-Luttinger theory of transport; and some recent theories dealing with strange metals. This book is an invaluable resource for undergraduate students, post-graduate students, and researchers with a background in quantum mechanics, statistical mechanics, and mathematical methods.
The aim of this book is to present the theory and applications of the relativistic Boltzmann equation in a self-contained manner, even for those readers who have no familiarity with special and general relativity. Though an attempt is made to present the basic concepts in a complete fashion, the style of presentation is chosen to be appealing to readers who want to understand how kinetic theory is used for explicit calculations. The book will be helpful not only as a textbook for an advanced course on relativistic kinetic theory but also as a reference for physicists, astrophysicists and applied mathematicians who are interested in the theory and applications of the relativistic Boltzmann equation.
Advances in semiconductor technology have made possible the fabrication of structures whose dimensions are much smaller than the mean free path of an electron. This book gives a thorough account of the theory of electronic transport in such mesoscopic systems. After an initial chapter covering fundamental concepts, the transmission function formalism is presented, and used to describe three key topics in mesoscopic physics: the quantum Hall effect; localisation; and double-barrier tunnelling. Other sections include a discussion of optical analogies to mesoscopic phenomena, and the book concludes with a description of the non-equilibrium Green's function formalism and its relation to the transmission formalism. Complete with problems and solutions, the book will be of great interest to graduate students of mesoscopic physics and nanoelectronic device engineering, as well as to established researchers in these fields.
The International Congress on Mathematical Physics is the flagship conference in this exciting field. Convening every three years, it gives a survey on the progress achieved in all branches of mathematical physics. It also provides a superb platform to discuss challenges and new ideas. The present volume collects material from the XVIth ICMP which was held in Prague, August 2009, and features most of the plenary lectures and invited lectures in topical sessions as well as information on other parts of the congress program.This volume provides a broad coverage of the field of mathematical physics, from dominantly mathematical subjects to particle physics, condensed matter, and application of mathematical physics methods in various areas such as astrophysics and ecology, amongst others.
Learn about the most recent advances in 2D materials with this comprehensive and accessible text. Providing all the necessary materials science and physics background, leading experts discuss the fundamental properties of a wide range of 2D materials, and their potential applications in electronic, optoelectronic and photonic devices. Several important classes of materials are covered, from more established ones such as graphene, hexagonal boron nitride, and transition metal dichalcogenides, to new and emerging materials such as black phosphorus, silicene, and germanene. Readers will gain an in-depth understanding of the electronic structure and optical, thermal, mechanical, vibrational, spin and plasmonic properties of each material, as well as the different techniques that can be used for their synthesis. Presenting a unified perspective on 2D materials, this is an excellent resource for graduate students, researchers and practitioners working in nanotechnology, nanoelectronics, nanophotonics, condensed matter physics, and chemistry.
Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.