National Aeronautics and Space Administration (NASA)
Published: 2018-07-11
Total Pages: 28
Get eBook
The goal was to quantify the benefits of airborne forward-look windshear detection and to develop and test a candidate set of strategies for recovery from inadvertent microburst encounters during the landing approach, given the utilization of both reactive-only and forward-look windshear detection. Candidate strategies were developed and evaluated using a non-piloted simulation consisting of a simple point-mass performance model of a transport-category airplane flying through an analytical microburst model. The results indicate that the factor which most strongly effects a microburst recovery is the time at which the recovery is initiated. Forward-look alerts given 10 seconds prior to microburst entry permitted recoveries to be made with negligible altitude loss. The results also show that no single microburst scenario can be used to evaluate the relative merits of various recovery strategies. The type of alert used to initiate the recovery (reactive or forward-look) and the altitude of the microburst encounter had an effect on the type of recovery strategy that performed best. These factors may have serious implications for the design and certification of windshear systems. Hinton, David A. Langley Research Center RTOP 505-66-41-41...