Download Free Relational Mathematics Book in PDF and EPUB Free Download. You can read online Relational Mathematics and write the review.

Relational mathematics is to operations research and informatics what numerical mathematics is to engineering: it is intended to help modelling, reasoning, and computing. Its applications are therefore diverse, ranging from psychology, linguistics, decision aid, and ranking to machine learning and spatial reasoning. Although many developments have been made in recent years, they have rarely been shared amongst this broad community of researchers. This comprehensive 2010 overview begins with an easy introduction to the topic, assuming a minimum of prerequisites; but it is nevertheless theoretically sound and up to date. It is suitable for applied scientists, explaining all the necessary mathematics from scratch using a multitude of visualised examples, via matrices and graphs. It ends with tangible results on the research level. The author illustrates the theory and demonstrates practical tasks in operations research, social sciences and the humanities.
"Kids love to move. But how do we harness all that kinetic energy effectively for math learning? In Math on the Move, Malke Rosenfeld shows how pairing math concepts and whole body movement creates opportunities for students to make sense of math in entirely new ways. Malke shares her experience creating dynamic learning environments by: exploring the use of the body as a thinking tool, highlighting mathematical ideas that are usefully explored with a moving body, providing a range of entry points for learning to facilitate a moving math classroom. ..."--Publisher description.
This book touches on an area seldom explored: the mathematical underpinnings of the relational database. The topic is important, but far too often ignored. This is the first book to explain the underlying math in a way that’s accessible to database professionals. Just as importantly, if not more so, this book goes beyond the abstract by showing readers how to apply that math in ways that will make them more productive in their jobs. What’s in this book will "open the eyes" of most readers to the great power, elegance, and simplicity inherent in relational database technology.
Relational methods can be found at various places in computer science, notably in data base theory, relational semantics of concurrency, relationaltype theory, analysis of rewriting systems, and modern programming language design. In addition, they appear in algorithms analysis and in the bulk of discrete mathematics taught to computer scientists. This book is devoted to the background of these methods. It explains how to use relational and graph-theoretic methods systematically in computer science. A powerful formal framework of relational algebra is developed with respect to applications to a diverse range of problem areas. Results are first motivated by practical examples, often visualized by both Boolean 0-1-matrices and graphs, and then derived algebraically.
This remarkably comprehensive new book assembles concepts and results in relational databases theory previously scattered through journals, books, conference proceedings, and technical memoranda in one convenient source, and introduces pertinent new material not found elsewhere. The book is intended for a second course in databases, but is an excellent reference for researchers in the field. The material covered includes relational algebra, functional dependencies, multivalued and join dependencies, normal forms, tableaux and the chase computation, representation theory, domain and tuple relational calculus, query modification, database semantics and null values, acyclic database schemes, template dependencies, and computed relations. The final chapter is a brief survey of query languages in existing relational systems. Each chapter contains numerous examples and exercises, along with bibliographic remarks. - Back cover.
This volume examines the limitations of mathematical logic and proposes a new approach to logic intended to overcome them. To this end, the book compares mathematical logic with earlier views of logic, both in the ancient and in the modern age, including those of Plato, Aristotle, Bacon, Descartes, Leibniz, and Kant. From the comparison it is apparent that a basic limitation of mathematical logic is that it narrows down the scope of logic confining it to the study of deduction, without providing tools for discovering anything new. As a result, mathematical logic has had little impact on scientific practice. Therefore, this volume proposes a view of logic according to which logic is intended, first of all, to provide rules of discovery, that is, non-deductive rules for finding hypotheses to solve problems. This is essential if logic is to play any relevant role in mathematics, science and even philosophy. To comply with this view of logic, this volume formulates several rules of discovery, such as induction, analogy, generalization, specialization, metaphor, metonymy, definition, and diagrams. A logic based on such rules is basically a logic of discovery, and involves a new view of the relation of logic to evolution, language, reason, method and knowledge, particularly mathematical knowledge. It also involves a new view of the relation of philosophy to knowledge. This book puts forward such new views, trying to open again many doors that the founding fathers of mathematical logic had closed historically. trigger
This book summarizes years of research in the field of fuzzy relational programming, with a special emphasis on geometric models. It discusses the state-of-the-art in fuzzy relational geometric problems, together with key open issues that must be resolved to achieve a more efficient application of this method. Though chiefly based on research conducted by the authors, who were the first to introduce fuzzy geometric problems, it also covers important findings obtained in the field of linear and non-linear programming. Thanks to its balance of basic and advanced concepts, and its wealth of practical examples, the book offers a valuable guide for both newcomers and experienced researcher in the fields of soft computing and mathematical optimization.
This classic text presents problems of learning and teaching mathematics from both a psychological and mathematical perspective. The Psychology of Learning Mathematics, already translated into six languages (including Chinese and Japanese), has been revised for this American Edition to include the author's most recent findings on the formation of mathematical concepts, different kinds of imagery, interpersonal and emotional factors, and a new model of intelligence. The author contends that progress in the areas of learning and teaching mathematics can only be made when such factors as the abstract and hierarchical nature of mathematics, the relation to mathematical symbolism and the distinction between intelligent learning and rote memorization are taken into account and instituted in the classroom.
The calculus of relations has been an important component of the development of logic and algebra since the middle of the nineteenth century, when Augustus De Morgan observed that since a horse is an animal we should be able to infer that the head of a horse is the head of an animal. For this, Aristotelian syllogistic does not suffice: We require relational reasoning. George Boole, in his Mathematical Analysis of Logic of 1847, initiated the treatment of logic as part of mathematics, specifically as part of algebra. Quite the opposite conviction was put forward early this century by Bertrand Russell and Alfred North Whitehead in their Principia Mathematica (1910 - 1913): that mathematics was essentially grounded in logic. Logic thus developed in two streams. On the one hand algebraic logic, in which the calculus of relations played a particularly prominent part, was taken up from Boole by Charles Sanders Peirce, who wished to do for the "calculus of relatives" what Boole had done for the calculus of sets. Peirce's work was in turn taken up by Schroder in his Algebra und Logik der Relative of 1895 (the third part of a massive work on the algebra of logic). Schroder's work, however, lay dormant for more than 40 years, until revived by Alfred Tarski in his seminal paper "On the calculus of binary relations" of 1941 (actually his presidential address to the Association for Symbolic Logic).
This book constitutes the thoroughly refereed post-conference proceedings of the 13th International Conference on Relational and Algebraic Methods in Computer Science, RAMiCS 13, held in Cambridge, UK, in September 2012. The 23 revised full papers presented were carefully selected from 39 submissions in the general area of relational and algebraic methods in computer science, adding special focus on formal methods for software engineering, logics of programs and links with neighboring disciplines. The papers are structured in specific fields on applications to software specification and correctness, mechanized reasoning in relational algebras, algebraic program derivation, theoretical foundations, relations and algorithms, and properties of specialized relations.