Download Free Relational Mathematics Book in PDF and EPUB Free Download. You can read online Relational Mathematics and write the review.

Relational mathematics is to operations research and informatics what numerical mathematics is to engineering: it is intended to help modelling, reasoning, and computing. Its applications are therefore diverse, ranging from psychology, linguistics, decision aid, and ranking to machine learning and spatial reasoning. Although many developments have been made in recent years, they have rarely been shared amongst this broad community of researchers. This comprehensive 2010 overview begins with an easy introduction to the topic, assuming a minimum of prerequisites; but it is nevertheless theoretically sound and up to date. It is suitable for applied scientists, explaining all the necessary mathematics from scratch using a multitude of visualised examples, via matrices and graphs. It ends with tangible results on the research level. The author illustrates the theory and demonstrates practical tasks in operations research, social sciences and the humanities.
"Kids love to move. But how do we harness all that kinetic energy effectively for math learning? In Math on the Move, Malke Rosenfeld shows how pairing math concepts and whole body movement creates opportunities for students to make sense of math in entirely new ways. Malke shares her experience creating dynamic learning environments by: exploring the use of the body as a thinking tool, highlighting mathematical ideas that are usefully explored with a moving body, providing a range of entry points for learning to facilitate a moving math classroom. ..."--Publisher description.
This volume examines the limitations of mathematical logic and proposes a new approach to logic intended to overcome them. To this end, the book compares mathematical logic with earlier views of logic, both in the ancient and in the modern age, including those of Plato, Aristotle, Bacon, Descartes, Leibniz, and Kant. From the comparison it is apparent that a basic limitation of mathematical logic is that it narrows down the scope of logic confining it to the study of deduction, without providing tools for discovering anything new. As a result, mathematical logic has had little impact on scientific practice. Therefore, this volume proposes a view of logic according to which logic is intended, first of all, to provide rules of discovery, that is, non-deductive rules for finding hypotheses to solve problems. This is essential if logic is to play any relevant role in mathematics, science and even philosophy. To comply with this view of logic, this volume formulates several rules of discovery, such as induction, analogy, generalization, specialization, metaphor, metonymy, definition, and diagrams. A logic based on such rules is basically a logic of discovery, and involves a new view of the relation of logic to evolution, language, reason, method and knowledge, particularly mathematical knowledge. It also involves a new view of the relation of philosophy to knowledge. This book puts forward such new views, trying to open again many doors that the founding fathers of mathematical logic had closed historically. trigger
This remarkably comprehensive new book assembles concepts and results in relational databases theory previously scattered through journals, books, conference proceedings, and technical memoranda in one convenient source, and introduces pertinent new material not found elsewhere. The book is intended for a second course in databases, but is an excellent reference for researchers in the field. The material covered includes relational algebra, functional dependencies, multivalued and join dependencies, normal forms, tableaux and the chase computation, representation theory, domain and tuple relational calculus, query modification, database semantics and null values, acyclic database schemes, template dependencies, and computed relations. The final chapter is a brief survey of query languages in existing relational systems. Each chapter contains numerous examples and exercises, along with bibliographic remarks. - Back cover.
Relational methods can be found at various places in computer science, notably in data base theory, relational semantics of concurrency, relationaltype theory, analysis of rewriting systems, and modern programming language design. In addition, they appear in algorithms analysis and in the bulk of discrete mathematics taught to computer scientists. This book is devoted to the background of these methods. It explains how to use relational and graph-theoretic methods systematically in computer science. A powerful formal framework of relational algebra is developed with respect to applications to a diverse range of problem areas. Results are first motivated by practical examples, often visualized by both Boolean 0-1-matrices and graphs, and then derived algebraically.
This classic text presents problems of learning and teaching mathematics from both a psychological and mathematical perspective. The Psychology of Learning Mathematics, already translated into six languages (including Chinese and Japanese), has been revised for this American Edition to include the author's most recent findings on the formation of mathematical concepts, different kinds of imagery, interpersonal and emotional factors, and a new model of intelligence. The author contends that progress in the areas of learning and teaching mathematics can only be made when such factors as the abstract and hierarchical nature of mathematics, the relation to mathematical symbolism and the distinction between intelligent learning and rote memorization are taken into account and instituted in the classroom.
This book touches on an area seldom explored: the mathematical underpinnings of the relational database. The topic is important, but far too often ignored. This is the first book to explain the underlying math in a way that’s accessible to database professionals. Just as importantly, if not more so, this book goes beyond the abstract by showing readers how to apply that math in ways that will make them more productive in their jobs. What’s in this book will "open the eyes" of most readers to the great power, elegance, and simplicity inherent in relational database technology.
This book constitutes the proceedings of the 12 International Conference on Relational and Algebraic Methods in Computer Science, RAMICS 2011, held in Rotterdam, The Netherlands, in May/June 2011. This conference merges the RelMICS (Relational Methods in Computer Science) and AKA (Applications of Kleene Algebra) conferences, which have been a main forum for researchers who use the calculus of relations and similar algebraic formalisms as methodological and conceptual tools. Relational and algebraic methods and software tools turn out to be useful for solving problems in social choice and game theory. For that reason this conference included a special track on Computational Social Choice and Social Software. The 18 papers included were carefully reviewed and selected from 27 submissions. In addition the volume contains 2 invited tutorials and 5 invited talks.
This book constitutes the proceedings of the 17th International Conference on Relational and Algebraic Methods in Computer Science, RAMiCS 2018, held in Groningen, The Netherlands, in October/November 2018. The 21 full papers and 1 invited paper presented together with 2 invited abstracts and 1 abstract of a tutorial were carefully selected from 31 submissions. The papers are organized in the following topics: Theoretical foundations; reasoning about computations and programs; and applications and tools.
This book constitutes the proceedings of the 14th International Conference on Relational and Algebraic Methods in Computer Science, RAMiCS 2014 held in Marienstatt, Germany, in April/May 2014. The 25 revised full papers presented were carefully selected from 37 submissions. The papers are structured in specific fields on concurrent Kleene algebras and related formalisms, reasoning about computations and programs, heterogeneous and categorical approaches, applications of relational and algebraic methods and developments related to modal logics and lattices.