Download Free Relation Between Spark Ignition Engine Knock Detonation Waves And Autoignition As Shown By High Speed Photography Book in PDF and EPUB Free Download. You can read online Relation Between Spark Ignition Engine Knock Detonation Waves And Autoignition As Shown By High Speed Photography and write the review.

A critical review of literature bearing on the autoignition and detonation-wave theories of spark-ignition engine knock and on the nature of gas vibrations associated with combustion and knock results in the conclusion that neither the autoignition theory nor the detonation-wave theory is an adequate explanation of spark-ignition engine knock. A knock theory is proposed, combining the autoignition and detonation-wave theories, introducing the idea that the detonation wave develops in autoignited or afterburning gases, and ascribing comparatively low-pitched heavy knocks to autoignition but high-pitched pinging knocks to detonation waves with the possibility of combinations of the two types of knock.
A motion-picture of the development of knock in a spark-ignition engine is presented, which consists of 20 photographs taken at intervals of 5 microseconds, or at a rate of 200,000 photographs a second, with an equivalent wide-open exposure time of 6.4 microseconds for each photograph. A motion picture of a complete combustion process, including the development of knock, taken at the rate of 40,000 photographs a second is also presented to assist the reader in orienting the photographs of the knock development taken at 200,000 frames per second are analyzed and the conclusion is made that the type of knock in the spark-ignition engine involving violent gas vibration originates as a self-propagating disturbance starting at a point in the burning or autoigniting gases and spreading out from that point through the incompletely burned gases at a rate as high as 6800 feet per second, or about twice the speed of sound in the burned gases. Apparent formation of free carbon particles in both the burning and the burned gas is observed within 10 microseconds after passage of the knock disturbance through the gases.
February issue includes Appendix entitled Directory of United States Government periodicals and subscription publications; September issue includes List of depository libraries; June and December issues include semiannual index