Download Free Reinforced And Prestressed Concrete In Torsion Book in PDF and EPUB Free Download. You can read online Reinforced And Prestressed Concrete In Torsion and write the review.

This highly successful textbook has been comprehensively revised for two main reasons: to bring the book up-to-date and make it compatible with BS8110 1985; and to take into account the increasing use made of microcomputers in civil engineering. An important new chapter on microcomputer applications has been added.
Concrete is an integral part of twenty-first century structural engineering, and an understanding of how to analyze and design concrete structures is a vital part of training as a structural engineer. With Eurocode legislation increasingly replacing British Standards, it’s also important to know how this affects the way you can work with concrete. Newly revised to Eurocode 2, this second edition retains the original’s emphasis on qualitative understanding of the overall behaviour of concrete structures. Now expanded, with a new chapter dedicated to case studies, worked examples, and exercise examples, it is an even more comprehensive guide to conceptual design, analysis, and detailed design of concrete structures. The book provides civil and structural engineering students with complete coverage of the analysis and design of reinforced and prestressed concrete structures. Great emphasis is placed on developing a qualitative understanding of the overall behaviour of structures.
This text presents the theoretical and practical aspects of analysis and design, complemented by numerous design examples.
Completely revised to reflect the new ACI 318-08 Building Code and International Building Code, IBC 2009, this popular book offers a unique approach to examining the design of prestressed concrete members in a logical, step-by-step trial and adjustment procedure. Integrates handy flow charts to help readers better understand the steps needed for design and analysis. Includes a revised chapter containing the latest ACI and AASHTO Provisions on the design of post-tensioned beam end anchorage blocks using the strut-and-tie approach in conformity with ACI 318-08 Code. Offers a new complete section with two extensive design examples using the strut-and-tie approach for the design of corbels and deep beams. Features an addition to the elastic method of design, with comprehensive design examples on LRFD and Standard AASHTO designs of bridge deck members for flexure, shear and torsion, conforming to the latest AASHTO specifications. Includes a revised chapter on slender columns, including a simplified load-contour biaxial bending method which is easier to apply in desiign, using moments rather than loads in the reciprocal approach. A useful construction reference for engineers.
Providing both an introduction to basic concepts and an in-depth treatment of the most up-to-date methods for the design and analysis of concrete of structures, "Design of Prestressed Concrete" will service the needs of both students and professional engineers.
This highly successful textbook has been comprehensively revised for two main reasons: to bring the book up-to-date and make it compatible with BS8110 1985; and to take into account the increasing use made of microcomputers in civil engineering. An important chapter on microcomputer applications has been added.
Prestressing concrete technology is critical to understanding problems in existing civic structures including railway and highway bridges; to the rehabilitation of older structures; and to the design of new high-speed railway and long-span highway bridges. Analysis and Design of Prestressed Concrete delivers foundational concepts, and the latest research and design methods for the engineering of prestressed concrete, paying particular attention to crack resistance in the design of high-speed railway and long-span highway prestressed concrete bridges. The volume offers readers a comprehensive resource on prestressing technology and applications, as well as the advanced treatment of prestress losses and performance. Key aspects of this volume include analysis and design of prestressed concrete structures using a prestressing knowledge system, from initial stages to service; detailed loss calculation; time-dependent analysis on cross-sectional stresses; straightforward, simplified methods specified in codes; and in-depth calculation methods. Sixteen chapters combine standards and current research, theoretical analysis, and design methods into a practical resource on the analysis and design of prestressed concrete, as well as presenting novel calculation methods and theoretical models of practical use to engineers. - Presents a new approach to calculating prestress losses due to anchorage seating - Provides a unified method for calculating long-term prestress loss - Details cross-sectional stress analysis of prestressed concrete beams from jacking to service - Explains a new calculation method for long-term deflection of beams caused by creep and shrinkage - Gives a new theoretical model for calculating long-term crack width