Download Free Rehabilitation Techniques For Concrete Bridges Book in PDF and EPUB Free Download. You can read online Rehabilitation Techniques For Concrete Bridges and write the review.

In the last two decades, the rapid deterioration of bridge structures has become a serious technical and economical problem in many countries, including highly developed ones. Therefore, bridge rehabilitation has also become a very essential factor (sometimes even a decisive one) in contemporary bridge engineering. The book covers in synthetic form nearly all the most important problems concerning bridge rehabilitation, such as bridge superstructure and substructure, the typical damage observed in bridges as well as the assessment and evaluation techniques of their technical condition. The book is intended mainly for postgraduate university students. Therefore, all the problems are mostly presented in their physical, chemical and technical as well as economical aspects. The relevant requirements are treated as objective ones, i.e. irrespective of the rules, standards, regulations or guidelines particular to any country. This approach to the subject gives the book a more general character and therefore makes it a useful text for most civil engineering courses./a
Evaluation, repair and rehabilitation of bridges are increasingly important topics in the effort to deal with the deteriorating infrastructure. For example, in the United States about 40 percent of the nation's 570,000 bridges are classified, according to the Federal Highway Administra tion's (FHW A) criteria, as deficient and in need of rehabilitation and replacement. In other countries the situation is similar. FHW A estimates the cost of a bridge replacement and reha bilitation program at 50 billion dollars. The major factors that have contributed to the present situation are: the age, inadequate maintenance, increasing load spectra and environmental contamination. The deficient bridges are posted, repaired or replaced. The disposition of bridges involves clear economical and safety implications. To avoid high costs of replacement or repair, the evaluation must accurately reveal the present load carrying capacity of the struc ture and predict loads and any further changes in the capacity (deterioration) in the applicable time span. Accuracy of bridge evaluation can be improved by using the recent developments in bridge diagnostics, structural tests, material tests, structural analysis and probabilistic methods. There is a need for an international exchange of advanced experience to increase the research effi ciency. The Workshop is organized on the premise that the exchange of existing American and European experience in the area of bridge evaluation, repair and rehabilitation is beneficial for both parties involved.
Rehabilitation of Concrete Structures with Fiber Reinforced Polymer is a complete guide to the use of FRP in flexural, shear and axial strengthening of concrete structures. Through worked design examples, the authors guide readers through the details of usage, including anchorage systems, different materials and methods of repairing concrete structures using these techniques. Topics include the usage of FRP in concrete structure repair, concrete structural deterioration and rehabilitation, methods of structural rehabilitation and strengthening, a review of the design basis for FRP systems, including strengthening limits, fire endurance, and environmental considerations. In addition, readers will find sections on the strengthening of members under flexural stress, including failure modes, design procedures, examples and anchorage detailing, and sections on shear and torsion stress, axial strengthening, the installation of FRP systems, and strengthening against extreme loads, such as earthquakes and fire, amongst other important topics. - Presents worked design examples covering flexural, shear, and axial strengthening - Includes complete coverage of FRP in Concrete Repair - Explores the most recent guidelines (ACI440.2, 2017; AS5100.8, 2017 and Concrete society technical report no. 55, 2012)
This guide provides bridge related definitions and corresponding commentaries, as well as the framework for a systematic approach to a preventive maintenance program. The goal is to provide guidance on bridge preservation. This guide is intended for Federal, State, and local bridge engineers, area engineers, bridge owners, and bridge preservation practitioners.
Provides a review of the repair, maintenance and protection of concrete bridges. This book summarizes information from conference papers, research and technical reports, and others. It aims to increase the expertise of structural engineers and safeguard the investment. It presents solutions to the problems and pitfalls that engineers encounter.
Maintenance, Monitoring, Safety, Risk and Resilience of Bridges and Bridge Networks contains the lectures and papers presented at the Eighth International Conference on Bridge Maintenance, Safety and Management (IABMAS 2016), held in Foz do Iguaçu, Paraná, Brazil, 26-30 June, 2016. This volume consists of a book of extended abstracts and a DVD containing the full papers of 369 contributions presented at IABMAS 2016, including the T.Y. Lin Lecture, eight Keynote Lectures, and 360 technical papers from 38 countries. The contributions deal with the state-of-the-art as well as emerging concepts and innovative applications related to all main aspects of bridge maintenance, safety, management, resilience and sustainability. Major topics covered include: advanced materials, ageing of bridges, assessment and evaluation, bridge codes, bridge diagnostics, bridge management systems, composites, damage identification, design for durability, deterioration modeling, earthquake and accidental loadings, emerging technologies, fatigue, field testing, financial planning, health monitoring, high performance materials, inspection, life-cycle performance and cost, load models, maintenance strategies, non-destructive testing, optimization strategies, prediction of future traffic demands, rehabilitation, reliability and risk management, repair, replacement, residual service life, resilience, robustness, safety and serviceability, service life prediction, strengthening, structural integrity, and sustainability. This volume provides both an up-to-date overview of the field of bridge engineering as well as significant contributions to the process of making more rational decisions concerning bridge maintenance, safety, serviceability, resilience, sustainability, monitoring, risk-based management, and life-cycle performance using traditional and emerging technologies for the purpose of enhancing the welfare of society. It will serve as a valuable reference to all involved with bridge structure and infrastructure systems, including students, researchers and engineers from all areas of bridge engineering.
"This CD-ROM consists of eight papers that were presented by ACI Committee 440 at the Spring Convention in Atlanta, GA, in April 2007"--Site Web de l'éditeur