Download Free Rehabilitation Robots For Neurorehabilitation In High Low And Middle Income Countries Book in PDF and EPUB Free Download. You can read online Rehabilitation Robots For Neurorehabilitation In High Low And Middle Income Countries and write the review.

Rehabilitation Robots for Neurorehabilitation in High, Low, and Middle Income Countries: Current Practice, Barriers, and Future Directions describes the state-of-art research of stroke rehabilitation using robot systems in selected High Income Countries (HICs) and Low and Middle Income Countries (LMICs), along with potential solutions that enable these technologies to be available to clinicians worldwide, regardless of country and economic status. The book brings together engineers and clinicians, offers insights into healthcare disparities, and highlights potential solutions to facilitate the availability and accessibility of more robot systems to stroke survivors and their clinicians worldwide, regardless of country and economic status.In addition, the book provides examples on how robotic technology is used to bridge rehabilitation gaps in LMICs and describes potential strategies for increasing the expansion of robot-assisted stroke rehabilitation across more LMICs. Provides a global picture of robot-assisted neurorehabilitation Describes stroke healthcare in selected LMICs and selected HICs, along with disparity issues Discusses potential barriers to the penetration of rehabilitation robots into LMICs Presents concrete examples on how clinicians and engineers have begun to address healthcare gaps with rehabilitation robotics and how to deal with accessibility barriers
Rehabilitation Robotics gives an introduction and overview of all areas of rehabilitation robotics, perfect for anyone new to the field. It also summarizes available robot technologies and their application to different pathologies for skilled researchers and clinicians. The editors have been involved in the development and application of robotic devices for neurorehabilitation for more than 15 years. This experience using several commercial devices for robotic rehabilitation has enabled them to develop the know-how and expertise necessary to guide those seeking comprehensive understanding of this topic. Each chapter is written by an expert in the respective field, pulling in perspectives from both engineers and clinicians to present a multi-disciplinary view. The book targets the implementation of efficient robot strategies to facilitate the re-acquisition of motor skills. This technology incorporates the outcomes of behavioral studies on motor learning and its neural correlates into the design, implementation and validation of robot agents that behave as ‘optimal’ trainers, efficiently exploiting the structure and plasticity of the human sensorimotor systems. In this context, human-robot interaction plays a paramount role, at both the physical and cognitive level, toward achieving a symbiotic interaction where the human body and the robot can benefit from each other’s dynamics. Provides a comprehensive review of recent developments in the area of rehabilitation robotics Includes information on both therapeutic and assistive robots Focuses on the state-of-the-art and representative advancements in the design, control, analysis, implementation and validation of rehabilitation robotic systems
Rehabilitation Robotics summarizes the rationale for robot-assisted therapy and presents the technological steps in the evolution of the design and development of lower and upper extremity rehabilitation robots. After presenting the basic mechanisms of natural and artificial movement restoration, and the rationale for robot-aided movement therapy, it shows several design criteria that are relevant for the development of effective and safe rehabilitation robots.
Biomechatronics is rapidly becoming one of the most influential and innovative research directions defining the 21st century. The second edition Biomechatronics provides a complete and up-to-date account of this advanced subject at the university textbook level. This new edition introduces two new chapters – Animals Biomechatronics and Plants Biomechatronics – highlighting the importance of the rapidly growing world population and associated challenges with food production. Each chapter is co-authored by top experts led by Professor Marko B. Popovic, researcher and educator at the forefront of advancements in this fascinating field. Starting with an introduction to the historical background of Biomechatronics, this book covers recent breakthroughs in artificial organs and tissues, prosthetic limbs, neural interfaces, orthotic systems, wearable systems for physical augmentation, physical therapy and rehabilitation, robotic surgery, natural and synthetic actuators, sensors, and control systems. A number of practice prompts and solutions are provided at the end of the book. The second edition of Biomechatronics is a result of dedicated work of a team of more than 30 contributors from all across the globe including top researchers and educators in the United States (Popovic, Lamkin-Kennard, Herr, Sinyukov, Troy, Goodworth, Johnson, Kaipa, Onal, Bowers, Djuric, Fischer, Ji, Jovanovic, Luo, Padir, Tetreault), Japan (Tashiro, Iraminda, Ohta, Terasawa), Sweden (Boyraz), Turkey (Arslan, Karabulut, Ortes), Germany (Beckerle and Wiliwacher), New Zealand (Liarokapis), Switzerland (Dobrev), and Serbia (Lazarevic). The only biomechatronics textbook written, especially for students at a university level Ideal for students and researchers in the biomechatronics, biomechanics, robotics, and biomedical engineering fields Provides updated overview of state-of-the-art science and technology of modern day biomechatronics, introduced by the leading experts in this fascinating field This edition introduces two new chapters: Animals Biomechatronics and Plants Biomechatronics Expanded coverage of topics such as Prosthetic Limbs, Powered Orthotics, Direct Neural Interface, Bio-inspired Robotics, Robotic Surgery, Actuators, Control and Physical Intelligence
This book will provide an overview of the rehabilitation engineering field, including key concepts that are required to provide a solid foundation about the discipline. It will present these concepts through a mix of basic and applied knowledge from rehabilitation engineering research and practice. It's written as an introductory text in order to provide access to the field by those without previous experience or background in the field.These concepts will include those related to engineering and health that are necessary to understand the application of rehabilitation engineering to support human function.
One of the major application targets of service robots is to use them as assistive devices for rehabilitation. This book introduces some latest achievements in the field of rehabilitation robotics and assistive technology for people with disabilities and aged people. The book contains results from both theoretical and experimental works and reviews on some new advanced rehabilitation devices which has been recently transferred to the industry. Significant parts of the book are devoted to the assessment of new rehabilitation technologies, the evaluation of prototype devices with end-users, the safety of rehabilitation robots, and robot-assisted neurorehabilitation. The book is a representative selection of the latest trends in rehabilitation robotics and can be used as a reference for teaching on mechatronic devices for rehabilitation.
Neurorehabilitation Technology provides an accessible, practical overview of the all the major areas of development and application in the field. The initial chapters provide a clear, concise explanation of the rationale for robot use and the science behind the technology before proceeding to outline a theoretical framework for robotics in neurorehabilitative therapy. Subsequent chapters provide detailed practical information on state-of-the-art clinical applications of robotic devices, including robotics for locomotion; posture and balance and upper extremity recovery in stroke and spinal cord injury. Schematic diagrams, photographs and tables will be included to clarify the information for the reader. The book also discusses standard and safety issues and future perspectives.
One of the major application targets of service robots is to use them as assistive devices for rehabilitation. This book introduces some latest achievements in the field of rehabilitation robotics and assistive technology for people with disabilities and aged people. The book contains results from both theoretical and experimental works and reviews on some new advanced rehabilitation devices which has been recently transferred to the industry. Significant parts of the book are devoted to the assessment of new rehabilitation technologies, the evaluation of prototype devices with end-users, the safety of rehabilitation robots, and robot-assisted neurorehabilitation. The book is a representative selection of the latest trends in rehabilitation robotics and can be used as a reference for teaching on mechatronic devices for rehabilitation.
Focussing on the key technologies in developing robots for a wide range of medical rehabilitation activities – which will include robotics basics, modelling and control, biomechanics modelling, rehabilitation strategies, robot assistance, clinical setup/implementation as well as neural and muscular interfaces for rehabilitation robot control – this book is split into two parts; a review of the current state of the art, and recent advances in robotics for medical rehabilitation. Both parts will include five sections for the five key areas in rehabilitation robotics: (i) the upper limb; (ii) lower limb for gait rehabilitation (iii) hand, finger and wrist; (iv) ankle for strains and sprains; and (v) the use of EEG and EMG to create interfaces between the neurological and muscular functions of the patients and the rehabilitation robots. Each chapter provides a description of the design of the device, the control system used, and the implementation and testing to show how it fulfils the needs of that specific area of rehabilitation. The book will detail new devices, some of which have never been published before in any journal or conference.
Neuro-robotics is one of the most multidisciplinary fields of the last decades, fusing information and knowledge from neuroscience, engineering and computer science. This book focuses on the results from the strategic alliance between Neuroscience and Robotics that help the scientific community to better understand the brain as well as design robotic devices and algorithms for interfacing humans and robots. The first part of the book introduces the idea of neuro-robotics, by presenting state-of-the-art bio-inspired devices. The second part of the book focuses on human-machine interfaces for performance augmentation, which can seen as augmentation of abilities of healthy subjects or assistance in case of the mobility impaired. The third part of the book focuses on the inverse problem, i.e. how we can use robotic devices that physically interact with the human body, in order (a) to understand human motor control and (b) to provide therapy to neurologically impaired people or people with disabilities.