Download Free Regulatory T Cells Book in PDF and EPUB Free Download. You can read online Regulatory T Cells and write the review.

T cells play a vital role mediating adaptive immunity, a specific acquired resistance to an infectious agent produced by the introduction of an antigen. There are a variety of T cell types with different functions. They are called T cells, because they are derived from the thymus gland. This volume discusses how T cells are regulated through the operation of signaling mechanisms. Topics covered include positive and negative selection, early events in T cell receptor engagement, and various T cell subsets.
This volume includes contributions from the speakers of the Second IMD Congress (September 10-15, 2007; Moscow, Russia) who were eager to share some of the academic and clinical enthusiasm that defines the IMD meetings. The goal of the International Immune-Mediated Diseases: From Theory to Therapy (IMD) Congress is to bring the world’s best immunologists and clinicians to Moscow.
The vertebrate immune system defends the organism against invading pathogens while at the same time being self-tolerant to the body’s own constituents thus preserving its integrity. Multiple mechanisms work in concert to ensure self-tolerance. Apart from purging the T cell repertoire from auto-reactive T cells via negative selection in the thymus dominant tolerance exerted by regulatory T cells plays a major role in tolerance imposition and maintenance. Among the various regulatory/suppressive cells hitherto described, CD4+CD25+ regulatory T cells (Treg) and interleukin-10 producing T regulatory 1 (Tr1) cells have been studied in most detail and are the subject of most articles in this issue. Treg, also called "natural" regulatory T cells, will be traced from their intra-thymic origin to the site of their action in peripheral lymphoid organs and tissues. The repertoire of Treg is clearly biased towards recognition of self-antigens, thereby potentially preventing autoimmune diseases such as gastritis and oophoritis. Regulatory T cells, however also control infections, allergies and tolerance to transplanted tissues and this requires their induction in the periphery under conditions which are not yet fully understood. The concept of dominant tolerance, by far not novel, will offer new insights and hopefully tools for the successful treatment of autoimmune diseases, improved cancer immunotherapy and transplant survival. The fulfillment of these high expectations will, however, require their unambiguous identification and a better understanding of their mode of action.
Leukocyte culture conferences have a long pedigree. This volume records some of the scientific highlights of the 16th such annual con ference, and is a witness to the continuing evolution and popularity of leukocyte culture and of immunology. There is strong evidence of the widening horizons of immunology, both technically, with the obviously major impact of molecular biology into our understanding of cellular processes, and also conceptually. Traditionally, the 'proceedings' of these conferences have been published. But have the books produced really recorded the major part of the conference, the informal, friendly, but intense and some times heated exchanges that take place between workers in tackling very similar problems and systems and which are at the heart of every successful conference? Unfortunately this essence cannot be incorpo rated by soliciting manuscripts. For this reason, we have changed the format of publication, retaining published versions of the symposium papers, but requesting the workshop chairmen to produce a summary of the major new observations and areas of controversy highlighted in their sessions, as a vehicle for defining current areas of interest and debate. Not an easy task, as the workshop topics were culled from the abstracts submitted by the participants, rather than being on predefined topics. The unseasonal warmth in Cambridge was reflected in the atmos phere of the conference, the organization of which benefited from the administrative skills of Jean Bacon, Philippa Wells, Mr. Peter Irving, and Mrs.
Eosinophils in Health and Disease provides immunology researchers and students with a comprehensive overview of current thought and cutting-edge eosinophil research, providing chapters on basic science, disease-specific issues, therapeutics, models for study and areas of emerging importance.
Chromatin Signaling and Diseases covers the molecular mechanisms that regulate gene expression, which govern everything from embryonic development, growth, and human pathologies associated with aging, such as cancer. This book helps researchers learn about or keep up with the quickly expanding field of chromatin signaling. After reading this book, clinicians will be more capable of explaining the mechanisms of gene expression regulation to their patients to reassure them about new drug developments that target chromatin signaling mechanisms. For example, several epigenetic drugs that act on chromatin signaling factors are in clinical trials or even approved for usage in cancer treatments, Alzheimer's, and Huntington's diseases. Other epigenetic drugs are in development to regulate various class of chromatin signaling factors. To keep up with this changing landscape, clinicians and doctors will need to stay familiar with genetic advances that translate to clinical practice, such as chromatin signaling. Although sequencing of the human genome was completed over a decade ago and its structure investigated for nearly half a century, molecular mechanisms that regulate gene expression remain largely misunderstood. An emerging concept called chromatin signaling proposes that small protein domains recognize chemical modifications on the genome scaffolding histone proteins, facilitating the nucleation of enzymatic complexes at specific loci that then open up or shut down the access to genetic information, thereby regulating gene expression. The addition and removal of chemical modifications on histones, as well as the proteins that specifically recognize these, is reviewed in Chromatin Signaling and Diseases. Finally, the impact of gene expression defects associated with malfunctioning chromatin signaling is also explored. - Explains molecular mechanisms that regulate gene expression, which governs everything from embryonic development, growth, and human pathologies associated with aging - Educates clinicians and researchers about chromatin signaling, a molecular mechanism that is changing our understanding of human pathology - Explores the addition and removal of chemical modifications on histones, the proteins that specifically recognize these, and the impact of gene expression defects associated with malfunctioning chromatin signaling - Helps researchers learn about the quickly expanding field of chromatin signaling
Phenotypic Switching: Implications in Biology and Medicine provides a comprehensive examination of phenotypic switching across biological systems, including underlying mechanisms, evolutionary significance, and its role in biomedical science. Contributions from international leaders discuss conceptual and theoretical aspects of phenotypic plasticity, its influence over biological development, differentiation, biodiversity, and potential applications in cancer therapy, regenerative medicine and stem cell therapy, among other treatments. Chapters discuss fundamental mechanisms of phenotypic switching, including transition states, cell fate decisions, epigenetic factors, stochasticity, protein-based inheritance, specific areas of human development and disease relevance, phenotypic plasticity in melanoma, prostate cancer, breast cancer, non-genetic heterogeneity in cancer, hepatitis C, and more. This book is essential for active researchers, basic and translational scientists, clinicians, postgraduates and students in genetics, human genomics, pathology, bioinformatics, developmental biology, evolutionary biology and adaptive opportunities in yeast. - Thoroughly addresses the conceptual, experimental and translational aspects that underlie phenotypic plasticity - Emphasizes quantitative approaches, nonlinear dynamics, mechanistic insights and key methodologies to advance phenotypic plasticity studies - Features a diverse range of chapter contributions from international leaders in the field
This book provides comprehensive information, both for clinicians and scientists, on the basic mechanisms, clinical features, and therapeutic approaches to epilepsy as an inflammatory disease. Inflammation has been for many years considered as an etiologic player (and a therapeutic target) for a specific group of epilepsies. However, it turns out that this concept underestimated the impact of inflammation in seizure disorders. Many accepted therapies for non-inflammatory epilepsies act in part as an inflammatory drug. The CNS actively responds to acute immune challenges by altering body temperature, stimulating the HPA axis, as well as up- and down-regulating specific sympathetic pathways.
Advances in Immunology, a long-established and highly respected publication, presents current developments as well as comprehensive reviews in immunology. Articles address the wide range of topics that comprise immunology, including molecular and cellular activation mechanisms, phylogeny and molecular evolution, and clinical modalities. Edited and authored by the foremost scientists in the field, each volume provides up-to-date information and directions for the future. This volume focuses on regulatory T-cells. Contributions from leading authorities and industry experts Informs and updates on all the latest developments in the field