Download Free Regulatory Mechanisms In Breast Cancer Book in PDF and EPUB Free Download. You can read online Regulatory Mechanisms In Breast Cancer and write the review.

Holland-Frei Cancer Medicine, Ninth Edition, offers a balanced view of the most current knowledge of cancer science and clinical oncology practice. This all-new edition is the consummate reference source for medical oncologists, radiation oncologists, internists, surgical oncologists, and others who treat cancer patients. A translational perspective throughout, integrating cancer biology with cancer management providing an in depth understanding of the disease An emphasis on multidisciplinary, research-driven patient care to improve outcomes and optimal use of all appropriate therapies Cutting-edge coverage of personalized cancer care, including molecular diagnostics and therapeutics Concise, readable, clinically relevant text with algorithms, guidelines and insight into the use of both conventional and novel drugs Includes free access to the Wiley Digital Edition providing search across the book, the full reference list with web links, illustrations and photographs, and post-publication updates
MicroRNA (miRNA) biology is a cutting-edge topic in basic as well as biomedical research. This is a specialized book focusing on the current understanding of the role of miRNAs in the development, progression, invasion, and metastasis of diverse types of cancer. It also reviews their potential for applications in cancer diagnosis, prognosis, and th
In Breast Cancer: Cellular and Molecular Biology [Kluwer Academic Pub lishers, 1988], we tried to present an introduction to the emerging basic studies on steroid receptors, oncogenes, and growth factors in the regulation of normal and malignant mammary epithelium. The response to this volume was superb, indicating a tremendous interest in basic growth regulatory mechanisms governing breast cancer and controlling its malignant progres sion. In the two years since its publication, much new and exciting in formation has been published and the full interplay of regulatory mechanisms is now beginning to emerge. We have divided this book into four sections that we hope will unify important concepts and help to crystallize areas of consensus and/or disagreement among a diverse group of basic and clinical scientists working on the disease. The first section is devoted to studies on oncogenes, antioncogenes, proliferation, and tumor prognosis. The first chapter, by Sunderland and McGuire, introduces the characteristics of breast cancer as studied by patho logists to establish prognostic outcome. Of particular interest is a new proto oncogene called HER-2 (or neu), which is rapidly becoming accepted as a valuable new tumor marker of poor prognosis. The second chapter, by Lee Bookstein and Lee, introduces the best known antioncogene, the retinoblas toma antioncogene, whose expression is sometimes lost in breast cancer. Malignant progression appears to be influenced by the balance of proto oncogene and antioncogene expression.
This book is the culmination of three years of research effort on a multidisciplinary project in which physicists, mathematicians, computer scientists and social scientists worked together to arrive at a unifying picture of complex networks. The contributed chapters form a reference for the various problems in data analysis visualization and modeling of complex networks.
An overview of the current systems biology-based knowledge and the experimental approaches for deciphering the biological basis of cancer.
Resistance to therapies, both targeted and systemic, and metastases to distant organs are the underlying causes of breast cancer-associated mortality. The second edition of Breast Cancer Metastasis and Drug Resistance brings together some of the leading experts to comprehensively understand breast cancer: the factors that make it lethal, and current research and clinical progress. This volume covers the following core topics: basic understanding of breast cancer (statistics, epidemiology, racial disparity and heterogeneity), metastasis and drug resistance (bone metastasis, trastuzumab resistance, tamoxifen resistance and novel therapeutic targets, including non-coding RNAs, inflammatory cytokines, cancer stem cells, ubiquitin ligases, tumor microenvironment and signaling pathways such as TRAIL, JAK-STAT and mTOR) and recent developments in the field (epigenetic regulation, microRNAs-mediated regulation, novel therapies and the clinically relevant 3D models). Experts also discuss the advances in laboratory research along with their translational and clinical implications with an overarching goal to improve the diagnosis and prognosis, particularly that of breast cancer patients with advanced disease.
Genetic alterations in cancer, in addition to being the fundamental drivers of tumorigenesis, can give rise to a variety of metabolic adaptations that allow cancer cells to survive and proliferate in diverse tumor microenvironments. This metabolic flexibility is different from normal cellular metabolic processes and leads to heterogeneity in cancer metabolism within the same cancer type or even within the same tumor. In this book, we delve into the complexity and diversity of cancer metabolism, and highlight how understanding the heterogeneity of cancer metabolism is fundamental to the development of effective metabolism-based therapeutic strategies. Deciphering how cancer cells utilize various nutrient resources will enable clinicians and researchers to pair specific chemotherapeutic agents with patients who are most likely to respond with positive outcomes, allowing for more cost-effective and personalized cancer therapeutic strategies.
This book describes recent advances in translational research in breast cancer and presents emerging applications of this research that promise to have meaningful impacts on diagnosis and treatment. It introduces ideas and materials derived from the clinic that have been brought to "the bench" for basic research, as well as findings that have been applied back to "the bedside". Detailed attention is devoted to breast cancer biology and cell signaling pathways and to cancer stem cell and tumor heterogeneity in breast cancer. Various patient-derived research models are discussed, and a further focus is the role of biomarkers in precision medicine for breast cancer patients. Next-generation clinical research receives detailed attention, addressing the increasingly important role of big data in breast cancer research and a wide range of other emerging developments. An entire section is also devoted to the management of women with high-risk breast cancer. Translational Research in Breast Cancer will help clinicians and scientists to optimize their collaboration in order to achieve the common goal of conquering breast cancer.
Tumors can be induced by a variety of physical and chemical carcinogens. The resulting tumor cells are usually abnormal in their morphology and behavior and transmit their abnormalities to their daughter tumor cells. Most theories of the pathogenesis of tumors suggest that carcinogens in some way cause alterations either of the genomes or of inheritable patterns of gene expression in normal cells, which then cause morphological and behavioral changes. This volume presents a collection of articles aimed at the question by what genetic or epigenetic mechanisms carcinogens can cause morphological abnormalities of tumor cells. It includes reviews of cellular targets of known carcinogens, and presents varying viewpoints of how morphological abnormalities and the actions of carcinogens might be related. The volume will be of interest to all those who are involved in cancer research or in the prevention, diagnosis or management of tumors in humans or animals.