Download Free Regulation Of Gene Expression By Hormones Book in PDF and EPUB Free Download. You can read online Regulation Of Gene Expression By Hormones and write the review.

Over the past few years there have been considerable advances in our understanding of cellular control mechanisms, and current research is now linking areas of biology that were previously thought of as being quite separate. Molecular Aspects of Cellular Regulation is a series of occasional books on multidisciplinary topics which illustrate general principles of cellular regulation. Previous volumes described Recently Discovered Systems of Enzyme Regulation by Reversible Phosphorylation (Volumes 1 and 3), The Molecular Actions of Toxins and Viruses (Volume 2), Molecular Mechanisms of Transmembrane Signalling (Volume 4) and Calmodulin (Volume 5). This sixth volume, The Hormonal Control of Gene Transcription, has now been published to highlight recent important advances in our understanding of this topic which is linking two of the most active areas of current biochemical and molecular biological research (hormone action and gene transcription) and leading to the emergence of unifying concepts.
The first of its kind, this reference gives a comprehensive but concise introduction to epigenetics before covering the many interactions between hormone regulation and epigenetics at all levels. The contents are very well structured with no overlaps between chapters, and each one features supplementary material for use in presentations. Throughout, major emphasis is placed on pathological conditions, aiming at the many physiologists and developmental biologists who are familiar with the importance and mechanisms of hormone regulation but have a limited background in epigenetics.
A much-needed guide through the overwhelming amount of literature in the field. Comprehensive and detailed, this book combines background information with the most recentinsights. It introduces current concepts, emphasizing the transcriptional control of genetic information. Moreover, it links data on the structure of regulatory proteins with basic cellular processes. Both advanced students and experts will find answers to such intriguing questions as: - How are programs of specific gene repertoires activated and controlled? - Which genes drive and control morphogenesis? - Which genes govern tissue-specific tasks? - How do hormones control gene expression in coordinating the activities of different tissues? An abundant number of clearly presented glossary terms facilitates understanding of the biological background. Speacial feature: over 2200 (!) literature references.
Recent years have seen spectacular advances in the field of circadian biology. These have attracted the interest of researchers in many fields, including endocrinology, neurosciences, cancer, and behavior. By integrating a circadian view within the fields of endocrinology and metabolism, researchers will be able to reveal many, yet-unsuspected aspects of how organisms cope with changes in the environment and subsequent control of homeostasis. This field is opening new avenues in our understanding of metabolism and endocrinology. A panel of the most distinguished investigators in the field gathered together to discuss the present state and the future of the field. The editors trust that this volume will be of use to those colleagues who will be picking up the challenge to unravel how the circadian clock can be targeted for the future development of specific pharmacological strategies toward a number of pathologies.
This textbook aims to describe the fascinating area of eukaryotic gene regulation for graduate students in all areas of the biomedical sciences. Gene expression is essential in shaping the various phenotypes of cells and tissues and as such, regulation of gene expression is a fundamental aspect of nearly all processes in physiology, both in healthy and in diseased states. Th is pivotal role for the regulation of gene expression makes this textbook essential reading for students of all the biomedical sciences, in order to be better prepared for their specialized disciplines. A complete understanding of transcription factors and the processes that alter their activity is a major goal of modern life science research. The availability of the whole human genome sequence (and that of other eukaryotic genomes) and the consequent development of next-generation sequencing technologies have significantly changed nearly all areas of the biological sciences. For example, the genome-wide location of histone modifications and transcription factor binding sites, such as provided by the ENCODE consortium, has greatly improved our understanding of gene regulation. Therefore, the focus of this book is the description of the post-genome understanding of gene regulation.
The science of animal nutrition has made significant advances in the past century. In looking back at the discoveries of the 20th century, we can appreciate the tremendous impact that animal nutrition has had on our lives. From the discovery of vitamins and the sweeping shift in the use of oilseeds to replace animal products as dietary protein sources for animals during the war times of the 1900s-to our integral understanding of nutrients as regulators of gene expression today-animal nutrition has been the cornerstone for scientific advances in many areas. At the milestone of their 70th year of service to the nation, the National Research Council's (NRC) Committee on Animal Nutrition (CAN) sought to gain a better understanding of the magnitude of recent discoveries and directions in animal nutrition for the new century we are embarking upon. With financial support from the NRC, the committee was able to organize and host a symposium that featured scientists from many backgrounds who were asked to share their ideas about the potential of animal nutrition to address current problems and future challenges.
Biology for AP® courses covers the scope and sequence requirements of a typical two-semester Advanced Placement® biology course. The text provides comprehensive coverage of foundational research and core biology concepts through an evolutionary lens. Biology for AP® Courses was designed to meet and exceed the requirements of the College Board’s AP® Biology framework while allowing significant flexibility for instructors. Each section of the book includes an introduction based on the AP® curriculum and includes rich features that engage students in scientific practice and AP® test preparation; it also highlights careers and research opportunities in biological sciences.
This book illustrates, in a comprehensive manner, the most crucial principles involved in pharmacology and allied sciences. The title begins by discussing the historical aspects of drug discovery, with up to date knowledge on Nobel Laureates in pharmacology and their significant discoveries. It then examines the general pharmacological principles - pharmacokinetics and pharmacodynamics, with in-depth information on drug transporters and interactions. In the remaining chapters, the book covers a definitive collection of topics containing essential information on the basic principles of pharmacology and how they are employed for the treatment of diseases. Readers will learn about special topics in pharmacology that are hard to find elsewhere, including issues related to environmental toxicology and the latest information on drug poisoning and treatment, analytical toxicology, toxicovigilance, and the use of molecular biology techniques in pharmacology. The book offers a valuable resource for researchers in the fields of pharmacology and toxicology, as well as students pursuing a degree in or with an interest in pharmacology.
An overview of the supergene family made up of those nuclear hormone receptors which recognize thyroid and steroid hormones, vitamen D and retinoic acid and which are characterized by their ability to bind both ligands and the genes which respond to them.