Download Free Regularity Properties Of Functional Equations In Several Variables Book in PDF and EPUB Free Download. You can read online Regularity Properties Of Functional Equations In Several Variables and write the review.

This book illustrates the basic ideas of regularity properties of functional equations by simple examples. It then treats most of the modern results about regularity of non-composite functional equations of several variables in a unified fashion. A long introduction highlights the basic ideas for beginners and several applications are also included.
This treatise deals with modern theory of functional equations in several variables and their applications to mathematics, information theory, and the natural, behavioural and social sciences. The authors have chosen to emphasize applications, though not at the expense of theory, so they have kept the prerequisites to a minimum.
This handbook consists of seventeen chapters written by eminent scientists from the international mathematical community, who present important research works in the field of mathematical analysis and related subjects, particularly in the Ulam stability theory of functional equations. The book provides an insight into a large domain of research with emphasis to the discussion of several theories, methods and problems in approximation theory, analytic inequalities, functional analysis, computational algebra and applications. The notion of stability of functional equations has its origins with S. M. Ulam, who posed the fundamental problem for approximate homomorphisms in 1940 and with D. H. Hyers, Th. M. Rassias, who provided the first significant solutions for additive and linear mappings in 1941 and 1978, respectively. During the last decade the notion of stability of functional equations has evolved into a very active domain of mathematical research with several applications of interdisciplinary nature. The chapters of this handbook focus mainly on both old and recent developments on the equation of homomorphism for square symmetric groupoids, the linear and polynomial functional equations in a single variable, the Drygas functional equation on amenable semigroups, monomial functional equation, the Cauchy–Jensen type mappings, differential equations and differential operators, operational equations and inclusions, generalized module left higher derivations, selections of set-valued mappings, D’Alembert’s functional equation, characterizations of information measures, functional equations in restricted domains, as well as generalized functional stability and fixed point theory.
The theory of hypergroups is a rapidly developing area of mathematics due to its diverse applications in different areas like probability, harmonic analysis, etc. This book exhibits the use of functional equations and spectral synthesis in the theory of hypergroups. It also presents the fruitful consequences of this delicate OC marriageOCO where the methods of spectral analysis and synthesis can provide an efficient tool in characterization problems of function classes on hypergroups.This book is written for the interested reader who has open eyes for both functional equations and hypergroups, and who dares to enter a new world of ideas, a new world of methods OCo and, sometimes, a new world of unexpected difficulties.
Covering the main fields of mathematics, this handbook focuses on the methods used for obtaining solutions of various classes of mathematical equations that underlie the mathematical modeling of numerous phenomena and processes in science and technology. The authors describe formulas, methods, equations, and solutions that are frequently used in scientific and engineering applications and present classical as well as newer solution methods for various mathematical equations. The book supplies numerous examples, graphs, figures, and diagrams and contains many results in tabular form, including finite sums and series and exact solutions of differential, integral, and functional equations.
The notion of stability of functional equations of several variables in the sense used here had its origins more than half a century ago when S. Ulam posed the fundamental problem and Donald H. Hyers gave the first significant partial solution in 1941. The subject has been revised and de veloped by an increasing number of mathematicians, particularly during the last two decades. Three survey articles have been written on the subject by D. H. Hyers (1983), D. H. Hyers and Th. M. Rassias (1992), and most recently by G. L. Forti (1995). None of these works included proofs of the results which were discussed. Furthermore, it should be mentioned that wider interest in this subject area has increased substantially over the last years, yet the pre sentation of research has been confined mainly to journal articles. The time seems ripe for a comprehensive introduction to this subject, which is the purpose of the present work. This book is the first to cover the classical results along with current research in the subject. An attempt has been made to present the material in an integrated and self-contained fashion. In addition to the main topic of the stability of certain functional equa tions, some other related problems are discussed, including the stability of the convex functional inequality and the stability of minimum points. A sad note. During the final stages of the manuscript our beloved co author and friend Professor Donald H. Hyers passed away.
This volume gives a state of the art of triangular norms which can be used for the generalization of several mathematical concepts, such as conjunction, metric, measure, etc. 16 chapters written by leading experts provide a state of the art overview of theory and applications of triangular norms and related operators in fuzzy logic, measure theory, probability theory, and probabilistic metric spaces.Key Features:- Complete state of the art of the importance of triangular norms in various mathematical fields- 16 self-contained chapters with extensive bibliographies cover both the theoretical background and many applications- Chapter authors are leading authorities in their fields- Triangular norms on different domains (including discrete, partially ordered) are described- Not only triangular norms but also related operators (aggregation operators, copulas) are covered- Book contains many enlightening illustrations· Complete state of the art of the importance of triangular norms in various mathematical fields· 16 self-contained chapters with extensive bibliographies cover both the theoretical background and many applications· Chapter authors are leading authorities in their fields· Triangular norms on different domains (including discrete, partially ordered) are described· Not only triangular norms but also related operators (aggregation operators, copulas) are covered· Book contains many enlightening illustrations
This book presents current research on Ulam stability for functional equations and inequalities. Contributions from renowned scientists emphasize fundamental and new results, methods and techniques. Detailed examples are given to theories to further understanding at the graduate level for students in mathematics, physics, and engineering. Key topics covered in this book include: Quasi means Approximate isometries Functional equations in hypergroups Stability of functional equations Fischer-Muszély equation Haar meager sets and Haar null sets Dynamical systems Functional equations in probability theory Stochastic convex ordering Dhombres functional equation Nonstandard analysis and Ulam stability This book is dedicated in memory of Staniłsaw Marcin Ulam, who posed the fundamental problem concerning approximate homomorphisms of groups in 1940; which has provided the stimulus for studies in the stability of functional equations and inequalities.
This volume provides an accessible and coherent introduction to some of the scientific progress on functional equations on groups in the last two decades. It presents the latest methods of treating the topic and contains new and transparent proofs. Its scope extends from the classical functional equations on the real line to those on groups, in particular, non-abelian groups. This volume presents, in careful detail, a number of illustrative examples like the cosine equation on the Heisenberg group and on the group SL(2, R). Some of the examples are not even seen in existing monographs. Thus, it is an essential source of reference for further investigations.
Inequalities continue to play an essential role in mathematics. Perhaps, they form the last field comprehended and used by mathematicians in all areas of the discipline. Since the seminal work Inequalities (1934) by Hardy, Littlewood and Pólya, mathematicians have laboured to extend and sharpen their classical inequalities. New inequalities are discovered every year, some for their intrinsic interest whilst others flow from results obtained in various branches of mathematics. The study of inequalities reflects the many and various aspects of mathematics. On one hand, there is the systematic search for the basic principles and the study of inequalities for their own sake. On the other hand, the subject is the source of ingenious ideas and methods that give rise to seemingly elementary but nevertheless serious and challenging problems. There are numerous applications in a wide variety of fields, from mathematical physics to biology and economics. This volume contains the contributions of the participants of the Conference on Inequalities and Applications held in Noszvaj (Hungary) in September 2007. It is conceived in the spirit of the preceding volumes of the General Inequalities meetings held in Oberwolfach from 1976 to 1995 in the sense that it not only contains the latest results presented by the participants, but it is also a useful reference book for both lecturers and research workers. The contributions reflect the ramification of general inequalities into many areas of mathematics and also present a synthesis of results in both theory and practice.