Download Free Regularity And Complexity In Dynamical Systems Book in PDF and EPUB Free Download. You can read online Regularity And Complexity In Dynamical Systems and write the review.

Regularity and Complexity in Dynamical Systems describes periodic and chaotic behaviors in dynamical systems, including continuous, discrete, impulsive, discontinuous, and switching systems. In traditional analysis, the periodic and chaotic behaviors in continuous, nonlinear dynamical systems were extensively discussed even if unsolved. In recent years, there has been an increasing amount of interest in periodic and chaotic behaviors in discontinuous dynamical systems because such dynamical systems are prevalent in engineering. Usually, the smoothening of discontinuous dynamical system is adopted in order to use the theory of continuous dynamical systems. However, such technique cannot provide suitable results in such discontinuous systems. In this book, an alternative way is presented to discuss the periodic and chaotic behaviors in discontinuous dynamical systems.
Regularity and Complexity in Dynamical Systems describes periodic and chaotic behaviors in dynamical systems, including continuous, discrete, impulsive, discontinuous, and switching systems. In traditional analysis, the periodic and chaotic behaviors in continuous, nonlinear dynamical systems were extensively discussed even if unsolved. In recent years, there has been an increasing amount of interest in periodic and chaotic behaviors in discontinuous dynamical systems because such dynamical systems are prevalent in engineering. Usually, the smoothening of discontinuous dynamical system is adopted in order to use the theory of continuous dynamical systems. However, such technique cannot provide suitable results in such discontinuous systems. In this book, an alternative way is presented to discuss the periodic and chaotic behaviors in discontinuous dynamical systems.
This book presents recent developments in nonlinear dynamics and physics with an emphasis on complex systems. The contributors provide recent theoretic developments and new techniques to solve nonlinear dynamical systems and help readers understand complexity, stochasticity, and regularity in nonlinear dynamical systems. This book covers integro-differential equation solvability, Poincare recurrences in ergodic systems, orientable horseshoe structure, analytical routes of periodic motions to chaos, grazing on impulsive differential equations, from chaos to order in coupled oscillators, and differential-invariant solutions for automorphic systems, inequality under uncertainty.
“Discontinuous Dynamical Systems” presents a theory of dynamics and flow switchability in discontinuous dynamical systems, which can be as the mathematical foundation for a new dynamics of dynamical system networks. The book includes a theory for flow barriers and passability to boundaries in discontinuous dynamical systems that will completely change traditional concepts and ideas in the field of dynamical systems. Edge dynamics and switching complexity of flows in discontinuous dynamical systems are explored in the book and provide the mathematical basis for developing the attractive network channels in dynamical systems. The theory of bouncing flows to boundaries, edges and vertexes in discontinuous dynamical systems with multi-valued vector fields is described in the book as a “billiard” theory of dynamical system networks. The theory of dynamical system interactions in discontinued dynamical systems can be used as a general principle in dynamical system networks, which is applied to dynamical system synchronization. The book represents a valuable reference work for university professors and researchers in applied mathematics, physics, mechanics, and control. Dr. Albert C.J. Luo is an internationally respected professor in nonlinear dynamics and mechanics, and he works at Southern Illinois University Edwardsville, USA.
Nonlinear Systems and Methods For Mechanical, Electrical and Biosystems presents topics observed at the 3rd Conference on Nonlinear Science and Complexity(NSC), focusing on energy transfer and synchronization in hybrid nonlinear systems. The studies focus on fundamental theories and principles,analytical and symbolic approaches, computational techniques in nonlinear physical science and mathematics. Broken into three parts, the text covers: Parametrical excited pendulum, nonlinear dynamics in hybrid systems, dynamical system synchronization and (N+1) body dynamics as well as new views different from the existing results in nonlinear dynamics, mathematical methods for dynamical systems including conservation laws, dynamical symmetry in nonlinear differential equations and invex energies and nonlinear phenomena in physical problems such as solutions, complex flows, chemical kinetics, Toda lattices and parallel manipulator. This book is useful to scholars, researchers and advanced technical members of industrial laboratory facilities developing new tools and products.
A combinatorial method is developed in this book to explore the mysteries of chaos, which has became a topic of science since 1975. Using tools from theoretical computer science, formal languages and automata, the complexity of symbolic behaviors of dynamical systems is classified and analysed thoroughly. This book is mainly devoted to explanation of this method and apply it to one-dimensional dynamical systems, including the circle and interval maps, which are typical in exhibiting complex behavior through simple iterated calculations. The knowledge for reading it is self-contained in the book.
A geometric process is a simple monotone process that was first introduced by the author in 1988. It is a generalization of renewal process. This book captures the extensive research work on geometric processes that has been done since then in both probability and statistics theory and various applications. Some results are published for the first time. A reference book for researchers and a handbook for practioners, it is also a useful textbook for postgraduate or senior undergraduate students.
Discrete and Switching Dynamical Systems is a unique book about stability and its switching complexity in discrete dynamical systems, and provides a simple and concise view of the theory of stability and bifurcation in nonlinear discrete dynamical systems. Linear discrete systems with repeated eigenvalues are presented as an introduction. Higher-order singularity, stability and bifurcations in nonlinear discrete dynamical systems are presented. Several examples are presented to illustrate chaos fractality and complete dynamics of nonlinear discrete dynamical systems. Switching systems with transports are discussed comprehensively as a general fashion to present continuous and discrete mixed systems, and mapping dynamics, grazing phenomena and strange attractor fragmentation are also presented for a better understanding of regularity and complexity in discrete, switching and discontinuous dynamical systems. This book is written as a textbook or reference book for university students, professors and researchers in applied mathematics, physics, engineering, economics dynamics and finance. Albert C.J. Luo is an internationally recognized professor in nonlinear dynamics and mechanics. He worked at Southern Illinois University Edwardsville, USA. His principal research interests lie in the fields of Hamiltonian chaos, nonlinear mechanics, and discontinuous dynamical systems. A different view of stability and bifurcations in discrete dynamical systemsHigher order singularity, stability switching complexity and bifurcationsChaos fractality and complete dynamicsHow to construct mappings from physical systemsMapping dynamics, grazing invariance and strange attractor fragmentationUser friendly presentation and intuitive illustrationsWide audience due to instructive and comprehensive examples
The theory of modern dynamical systems dates back to 1890 with studies by Poincaré on celestial mechanics. The tradition was continued by Birkhoff in the United States with his pivotal work on periodic orbits, and by the Moscow School in Russia (Liapunov, Andronov, Pontryagin). In the 1960s the field was revived by the emergence of the theory of chaotic attractors, and in modern years by accurate computer simulations. This book provides an overview of recent developments in the theory of dynamical systems, presenting some significant advances in the definition of new models, computer algorithms, and applications. Researchers, engineers and graduate students in both pure and applied mathematics will benefit from the chapters collected in this volume.