Download Free Regular Variation Book in PDF and EPUB Free Download. You can read online Regular Variation and write the review.

A comprehensive account of the theory and applications of regular variation.
This book examines the fundamental mathematical and stochastic process techniques needed to study the behavior of extreme values of phenomena based on independent and identically distributed random variables and vectors. It emphasizes the core primacy of three topics necessary for understanding extremes: the analytical theory of regularly varying functions; the probabilistic theory of point processes and random measures; and the link to asymptotic distribution approximations provided by the theory of weak convergence of probability measures in metric spaces.
This is the first book offering an application of regular variation to the qualitative theory of differential equations. The notion of regular variation, introduced by Karamata (1930), extended by several scientists, most significantly de Haan (1970), is a powerful tool in studying asymptotics in various branches of analysis and in probability theory. Here, some asymptotic properties (including non-oscillation) of solutions of second order linear and of some non-linear equations are proved by means of a new method that the well-developed theory of regular variation has yielded. A good graduate course both in real analysis and in differential equations suffices for understanding the book.
This book aims to present a comprehensive, self-contained, and concise overview of extreme value theory for time series, incorporating the latest research trends alongside classical methodology. Appropriate for graduate coursework or professional reference, the book requires a background in extreme value theory for i.i.d. data and basics of time series. Following a brief review of foundational concepts, it progresses linearly through topics in limit theorems and time series models while including historical insights at each chapter’s conclusion. Additionally, the book incorporates complete proofs and exercises with solutions as well as substantive reference lists and appendices, featuring a novel commentary on the theory of vague convergence.
This comprehensive text gives an interesting and useful blend of the mathematical, probabilistic and statistical tools used in heavy-tail analysis. It is uniquely devoted to heavy-tails and emphasizes both probability modeling and statistical methods for fitting models. Prerequisites for the reader include a prior course in stochastic processes and probability, some statistical background, some familiarity with time series analysis, and ability to use a statistics package. This work will serve second-year graduate students and researchers in the areas of applied mathematics, statistics, operations research, electrical engineering, and economics.
Die Quintessenz aus über 100 Originalarbeiten! Ausgehend von den Grundpfeilern der modernen Wahrscheinlichkeitstheorie entwickeln die Autoren dieses in sich geschlossenen, gut verständlich formulierten Bandes die Theorie der unendlich teilbaren Verteilungen und der regulären Variation. Im Anschluss erarbeiten sie die allgemeine Grenzwerttheorie für unabhängige Zufallsvektoren. Dabei achten sie sorgfältig darauf, alle Aspekte in den Kontext der Wahrscheinlichkeitslehre und Statistik zu stellen und bieten dafür eine Fülle von Zusatzinformationen an.
This monograph is a gateway for researchers and graduate students to explore the profound, yet subtle, world of long-range dependence (also known as long memory). The text is organized around the probabilistic properties of stationary processes that are important for determining the presence or absence of long memory. The first few chapters serve as an overview of the general theory of stochastic processes which gives the reader sufficient background, language, and models for the subsequent discussion of long memory. The later chapters devoted to long memory begin with an introduction to the subject along with a brief history of its development, followed by a presentation of what is currently the best known approach, applicable to stationary processes with a finite second moment. The book concludes with a chapter devoted to the author’s own, less standard, point of view of long memory as a phase transition, and even includes some novel results. Most of the material in the book has not previously been published in a single self-contained volume, and can be used for a one- or two-semester graduate topics course. It is complete with helpful exercises and an appendix which describes a number of notions and results belonging to the topics used frequently throughout the book, such as topological groups and an overview of the Karamata theorems on regularly varying functions.
The classic text for understanding complex statistical probability An Introduction to Probability Theory and Its Applications offers comprehensive explanations to complex statistical problems. Delving deep into densities and distributions while relating critical formulas, processes and approaches, this rigorous text provides a solid grounding in probability with practice problems throughout. Heavy on application without sacrificing theory, the discussion takes the time to explain difficult topics and how to use them. This new second edition includes new material related to the substitution of probabilistic arguments for combinatorial artifices as well as new sections on branching processes, Markov chains, and the DeMoivre-Laplace theorem.