Download Free Regular Non Additive Multimeasures Fundaments And Applications Book in PDF and EPUB Free Download. You can read online Regular Non Additive Multimeasures Fundaments And Applications and write the review.

This book is intended to be an exhaustive study on regularity and other properties of continuity for different types of non-additive multimeasures and with respect to different types of topologies. The book is addressed to graduate and postgraduate students, teachers and all researchers in mathematics, but not only. Since the notions and results offered by this book are closely related to various notions of the theory of probability, this book will be useful to a wider category of readers, using multivalued analysis techniques in areas such as control theory and optimization, economic mathematics, game theory, decision theory, etc. Measure and integration theory developed during the early years of the 20th century is one of the most important contributions to modern mathematical analysis, with important applications in many fields. In the last years, many classical problems from measure theory have been treated in the non-additive case and also extended in the set-valued case. The property of regularity is involved in many results of mathematical analysis, due to its applications in probability theory, stochastic processes, optimal control problems, dynamical systems, Markov chains, potential theory etc.
This book is intended to be an exhaustive study on regularity and other properties of continuity for different types of non-additive multimeasures and with respect to different types of topologies. The book is addressed to graduate and postgraduate students, teachers and all researchers in mathematics, but not only. Since the notions and results offered by this book are closely related to various notions of the theory of probability, this book will be useful to a wider category of readers, using multivalued analysis techniques in areas such as control theory and optimization, economic mathematics, game theory, decision theory, etc. Measure and integration theory developed during the early years of the 20th century is one of the most important contributions to modern mathematical analysis, with important applications in many fields. In the last years, many classical problems from measure theory have been treated in the non-additive case and also extended in the set-valued case. The property of regularity is involved in many results of mathematical analysis, due to its applications in probability theory, stochastic processes, optimal control problems, dynamical systems, Markov chains, potential theory etc.
This book provides a comprehensive and timely report in the area of non-additive measures and integrals. It is based on a panel session on fuzzy measures, fuzzy integrals and aggregation operators held during the 9th International Conference on Modeling Decisions for Artificial Intelligence (MDAI 2012) in Girona, Spain, November 21-23, 2012. The book complements the MDAI 2012 proceedings book, published in Lecture Notes in Computer Science (LNCS) in 2012. The individual chapters, written by key researchers in the field, cover fundamental concepts and important definitions (e.g. the Sugeno integral, definition of entropy for non-additive measures) as well some important applications (e.g. to economics and game theory) of non-additive measures and integrals. The book addresses students, researchers and practitioners working at the forefront of their field.
This book presents an exhaustive study of atomicity from a mathematics perspective in the framework of multi-valued non-additive measure theory. Applications to quantum physics and, more generally, to the fractal theory of the motion, are highlighted. The study details the atomicity problem through key concepts, such as the atom/pseudoatom, atomic/nonatomic measures, and different types of non-additive set-valued multifunctions. Additionally, applications of these concepts are brought to light in the study of the dynamics of complex systems. The first chapter prepares the basics for the next chapters. In the last chapter, applications of atomicity in quantum physics are developed and new concepts, such as the fractal atom are introduced. The mathematical perspective is presented first and the discussion moves on to connect measure theory and quantum physics through quantum measure theory. New avenues of research, such as fractal/multifractal measure theory with potential applications in life sciences, are opened.
This is the first systematic exposition of random sets theory since Matheron (1975), with full proofs, exhaustive bibliographies and literature notes Interdisciplinary connections and applications of random sets are emphasized throughout the book An extensive bibliography in the book is available on the Web at http://liinwww.ira.uka.de/bibliography/math/random.closed.sets.html, and is accompanied by a search engine
Written in honor of Victor Havin (1933–2015), this volume presents a collection of surveys and original papers on harmonic and complex analysis, function spaces and related topics, authored by internationally recognized experts in the fields. It also features an illustrated scientific biography of Victor Havin, one of the leading analysts of the second half of the 20th century and founder of the Saint Petersburg Analysis Seminar. A complete list of his publications, as well as his public speech "Mathematics as a source of certainty and uncertainty", presented at the Doctor Honoris Causa ceremony at Linköping University, are also included.
This monograph provides an introduction to the theory of topologies defined on the closed subsets of a metric space, and on the closed convex subsets of a normed linear space as well. A unifying theme is the relationship between topology and set convergence on the one hand, and set functionals on the other. The text includes for the first time anywhere an exposition of three topologies that over the past ten years have become fundamental tools in optimization, one-sided analysis, convex analysis, and the theory of multifunctions: the Wijsman topology, the Attouch--Wets topology, and the slice topology. Particular attention is given to topologies on lower semicontinuous functions, especially lower semicontinuous convex functions, as associated with their epigraphs. The interplay between convex duality and topology is carefully considered and a chapter on set-valued functions is included. The book contains over 350 exercises and is suitable as a graduate text. This book is of interest to those working in general topology, set-valued analysis, geometric functional analysis, optimization, convex analysis and mathematical economics.
The idea of modeling the behaviour of phenomena at multiple scales has become a useful tool in both pure and applied mathematics. Fractal-based techniques lie at the heart of this area, as fractals are inherently multiscale objects; they very often describe nonlinear phenomena better than traditional mathematical models. In many cases they have been used for solving inverse problems arising in models described by systems of differential equations and dynamical systems. "Fractal-Based Methods in Analysis" draws together, for the first time in book form, methods and results from almost twenty years of research in this topic, including new viewpoints and results in many of the chapters. For each topic the theoretical framework is carefully explained using examples and applications. The second chapter on basic iterated function systems theory is designed to be used as the basis for a course and includes many exercises. This chapter, along with the three background appendices on topological and metric spaces, measure theory, and basic results from set-valued analysis, make the book suitable for self-study or as a source book for a graduate course. The other chapters illustrate many extensions and applications of fractal-based methods to different areas. This book is intended for graduate students and researchers in applied mathematics, engineering and social sciences. Herb Kunze is a professor of mathematics at the University of Guelph in Ontario. Davide La Torre is an associate professor of mathematics in the Department of Economics, Management and Quantitative Methods of the University of Milan. Franklin Mendivil is a professor of mathematics at Acadia University in Nova Scotia. Edward Vrscay is a professor in the department of Applied Mathematics at the University of Waterloo in Ontario. The major focus of their research is on fractals and the applications of fractals.
The central theme of this book is the role of energetical factors in the regulation of human information processing activity. This is a restatement of one of the classic problems of psychology - that of acc ounting for motivational or intensive aspects of behaviour, as opposed to structural or directional aspects. The term "energetics" was first used in the 1930's by Freeman, Duffy and others, following Cannon's energy mobilization view of emotion and motivation. The original concept had a limited life, probably because of its unnecessary focus on relativ ely peripheral processes, but it provided the foundations for the con cepts of "arousal" and "activation" which became the popular motivational constructs of the 1950's and 1960's. Now, these too are found wanting. The original assumptions of a unitary, non-specific process based on activation of the brain stem reticular formation have been shown to be misleading. Current work in neurobiology has demonstrated evidence of discrete neurotransmitter systems having quite specific information processing functions, and central roles in the regulation of behaviour. Even the venerable curvilinear relationship between motivation and per formance (the Yerkes-Dodson law) has been shown to be, at best, an unhelpful oversimplification. On a different front psychophysiologists have found complex patterns in the response of different bodily systems to external stressors and to task demands.
Handbook of Analysis and Its Foundations is a self-contained and unified handbook on mathematical analysis and its foundations. Intended as a self-study guide for advanced undergraduates and beginning graduatestudents in mathematics and a reference for more advanced mathematicians, this highly readable book provides broader coverage than competing texts in the area. Handbook of Analysis and Its Foundations provides an introduction to a wide range of topics, including: algebra; topology; normed spaces; integration theory; topological vector spaces; and differential equations. The author effectively demonstrates the relationships between these topics and includes a few chapters on set theory and logic to explain the lack of examples for classical pathological objects whose existence proofs are not constructive. More complete than any other book on the subject, students will find this to be an invaluable handbook. Covers some hard-to-find results including: Bessagas and Meyers converses of the Contraction Fixed Point Theorem Redefinition of subnets by Aarnes and Andenaes Ghermans characterization of topological convergences Neumanns nonlinear Closed Graph Theorem van Maarens geometry-free version of Sperners Lemma Includes a few advanced topics in functional analysis Features all areas of the foundations of analysis except geometry Combines material usually found in many different sources, making this unified treatment more convenient for the user Has its own webpage: http://math.vanderbilt.edu/