Download Free Regular And Totally Regular Interval Valued Neutrosophic Hypergraphs Book in PDF and EPUB Free Download. You can read online Regular And Totally Regular Interval Valued Neutrosophic Hypergraphs and write the review.

In this paper, we define the regular and the totally regular interval valued neutrosophic hypergraphs, and discuss the order and size along with properties of the regular and the totally regular single valued neutrosophic hypergraphs. We extend work to completeness of interval valued neutrosophic hypergraphs.
Broumi et al. [15] proposedthe concept of interval-valued neutrosophic graphs. In this research article, we first show that there are some flaws in Broumi et al. [15] ’s definition, which cannot be applied in network models. We then modify the definition of an interval-valued neutrosophic graph. Further, we present some operations on interval-valued neutrosophic graphs. Moreover, we discuss the concepts of self-complementary and self weak complementary interval-valued neutrosophic complete graphs. Finally, we describe regularity of interval-valued neutrosophic graphs.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
The following articles have been published: Regular and Totally Regular Interval Valued Neutrosophic Hypergraphs; Isomorphism of Single Valued Neutrosophic Hypergraphs; Isomorphism of Interval Valued Neutrosophic Hypergraphs; An Isolated Interval Valued Neutrosophic Graphs; Isomorphism of Bipolar Single Valued Neutrosophic Hypergraphs; Subtraction and Division of Neutrosophic Numbers; Rough Neutrosophic Hyper-complex set and its Application to Multi-Attribute Decision Making.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
Abstract: Contributors to current issue (listed in papers' order): K Mondal, S. Pramanik, F. Smarandache, M. A. Malik, A. Hassan, S. Broumi, S. K. De, I. Beg, A. N. H. Zaied, H. M. Naguib, N. Shah, A. A. Salama, M. Eisa, H. E. Ghawalby, A. E. Fawzy, M. Sarkar, S. Dey, T. K. Roy, S. Karatas, C. Kuru, P. J. M. Vera, C. F. M. Delgado, M. P. Gónzalez, M. L. Vázquez, Tuhin Bera, and Nirmal Kumar Mahapatra. Papers in current issue (listed in papers' order): Multi-attribute Decision Making based on Rough Neutrosophic Variational Coefficient Similarity Measure; Regular Single Valued Neutrosophic Hypergraphs; Triangular Dense Fuzzy Neutrosophic Sets; Applications of Fuzzy and Neutrosophic Logic in Solving Multi-criteria Decision Making Problems; Irregular Neutrosophic Graphs; Neutrosophic Features for Image Retrieval; Truss Design Optimization using Neutrosophic Optimization Technique; Marketing skills as determinants that underpin the competitiveness of the rice industry in Yaguachi canton. Application of SVN numbers to the prioritization of strategies; Classical Logic and Neutrosophic Logic. Answers to K. Georgiev; Regular Bipolar Single Valued Neutrosophic Hypergraphs; Neutrosophic Topology; Neutrosophic crisp Sets via Neutrosophic crisp Topological Spaces; Rough Neutrosophic TOPSIS for Multi-Attribute Group Decision Making; Introduction to Neutrosophic Soft Groups. Keywords: neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics, neutrosophic measure, neutrosophic applications.
This tenth volume of Collected Papers includes 86 papers in English and Spanish languages comprising 972 pages, written between 2014-2022 by the author alone or in collaboration with the following 105 co-authors (alphabetically ordered) from 26 countries: Abu Sufian, Ali Hassan, Ali Safaa Sadiq, Anirudha Ghosh, Assia Bakali, Atiqe Ur Rahman, Laura Bogdan, Willem K.M. Brauers, Erick González Caballero, Fausto Cavallaro, Gavrilă Calefariu, T. Chalapathi, Victor Christianto, Mihaela Colhon, Sergiu Boris Cononovici, Mamoni Dhar, Irfan Deli, Rebeca Escobar-Jara, Alexandru Gal, N. Gandotra, Sudipta Gayen, Vassilis C. Gerogiannis, Noel Batista Hernández, Hongnian Yu, Hongbo Wang, Mihaiela Iliescu, F. Nirmala Irudayam, Sripati Jha, Darjan Karabašević, T. Katican, Bakhtawar Ali Khan, Hina Khan, Volodymyr Krasnoholovets, R. Kiran Kumar, Manoranjan Kumar Singh, Ranjan Kumar, M. Lathamaheswari, Yasar Mahmood, Nivetha Martin, Adrian Mărgean, Octavian Melinte, Mingcong Deng, Marcel Migdalovici, Monika Moga, Sana Moin, Mohamed Abdel-Basset, Mohamed Elhoseny, Rehab Mohamed, Mohamed Talea, Kalyan Mondal, Muhammad Aslam, Muhammad Aslam Malik, Muhammad Ihsan, Muhammad Naveed Jafar, Muhammad Rayees Ahmad, Muhammad Saeed, Muhammad Saqlain, Muhammad Shabir, Mujahid Abbas, Mumtaz Ali, Radu I. Munteanu, Ghulam Murtaza, Munazza Naz, Tahsin Oner, ‪Gabrijela Popović, Surapati Pramanik, R. Priya, S.P. Priyadharshini, Midha Qayyum, Quang-Thinh Bui, Shazia Rana, Akbara Rezaei, Jesús Estupiñán Ricardo, Rıdvan Sahin, Saeeda Mirvakili, Said Broumi, A. A. Salama, Flavius Aurelian Sârbu, Ganeshsree Selvachandran, Javid Shabbir, Shio Gai Quek, Son Hoang Le, Florentin Smarandache, Dragiša Stanujkić, S. Sudha, Taha Yasin Ozturk, Zaigham Tahir, The Houw Iong, Ayse Topal, Alptekin Ulutaș, Maikel Yelandi Leyva Vázquez, Rizha Vitania, Luige Vlădăreanu, Victor Vlădăreanu, Ștefan Vlăduțescu, J. Vimala, Dan Valeriu Voinea, Adem Yolcu, Yongfei Feng, Abd El-Nasser H. Zaied, Edmundas Kazimieras Zavadskas.
This ninth volume of Collected Papers includes 87 papers comprising 982 pages on Neutrosophic Theory and its applications in Algebra, written between 2014-2022 by the author alone or in collaboration with the following 81 co-authors (alphabetically ordered) from 19 countries: E.O. Adeleke, A.A.A. Agboola, Ahmed B. Al-Nafee, Ahmed Mostafa Khalil, Akbar Rezaei, S.A. Akinleye, Ali Hassan, Mumtaz Ali, Rajab Ali Borzooei , Assia Bakali, Cenap Özel, Victor Christianto, Chunxin Bo, Rakhal Das, Bijan Davvaz, R. Dhavaseelan, B. Elavarasan, Fahad Alsharari, T. Gharibah, Hina Gulzar, Hashem Bordbar, Le Hoang Son, Emmanuel Ilojide, Tèmítópé Gbóláhàn Jaíyéolá, M. Karthika, Ilanthenral Kandasamy, W.B. Vasantha Kandasamy, Huma Khan, Madad Khan, Mohsin Khan, Hee Sik Kim, Seon Jeong Kim, Valeri Kromov, R. M. Latif, Madeleine Al-Tahan, Mehmat Ali Ozturk, Minghao Hu, S. Mirvakili, Mohammad Abobala, Mohammad Hamidi, Mohammed Abdel-Sattar, Mohammed A. Al Shumrani, Mohamed Talea, Muhammad Akram, Muhammad Aslam, Muhammad Aslam Malik, Muhammad Gulistan, Muhammad Shabir, G. Muhiuddin, Memudu Olaposi Olatinwo, Osman Anis, Choonkil Park, M. Parimala, Ping Li, K. Porselvi, D. Preethi, S. Rajareega, N. Rajesh, Udhayakumar Ramalingam, Riad K. Al-Hamido, Yaser Saber, Arsham Borumand Saeid, Saeid Jafari, Said Broumi, A.A. Salama, Ganeshsree Selvachandran, Songtao Shao, Seok-Zun Song, Tahsin Oner, M. Mohseni Takallo, Binod Chandra Tripathy, Tugce Katican, J. Vimala, Xiaohong Zhang, Xiaoyan Mao, Xiaoying Wu, Xingliang Liang, Xin Zhou, Yingcang Ma, Young Bae Jun, Juanjuan Zhang.
This is the third volume of the Encyclopedia of Neutrosophic Researchers, edited from materials offered by the authors who responded to the editor’s invitation. The authors are listed alphabetically. The introduction contains a short history of neutrosophics, together with links to the main papers and books.
This book offers a comprehensive reference guide for modeling humanoid robots using intelligent and fuzzy systems. It provides readers with the necessary intelligent and fuzzy tools for controlling humanoid robots by incomplete, vague, and imprecise information or insufficient data, where classical modeling approaches cannot be applied. The respective chapters, written by prominent researchers, explain a wealth of both basic and advanced concepts including fuzzy control, metaheuristic-based control, neutrosophic control, etc. To foster reader comprehension, all chapters include relevant numerical examples or case studies. Taken together, they form an excellent reference guide for researchers, lecturers, and postgraduate students pursuing research on humanoid robots. Moreover, by extending all the main aspects of humanoid robots to its intelligent and fuzzy counterparts, the book presents a dynamic snapshot of the field that is expected to stimulate new directions, ideas, and developments.