Download Free Regnum Vegetabile Next Generation Sequencing In Plant Systematics Book in PDF and EPUB Free Download. You can read online Regnum Vegetabile Next Generation Sequencing In Plant Systematics and write the review.

Phylogenetics often uncovers contradicting hypotheses regarding the relationships within the same group of organisms, a phenomenon known since the beginning of the molecular systematics era. While, historically, single marker-based analyses produced discordance, nowadays entire cellular genomes or portions of the same genomic compartment conflict with others or the rest, respectively. In contrast to the beginning of the molecular systematics era, when adding markers and taxa offered a way out of systematic errors, genome inference-based incongruences cannot be addressed and explained easily. Disagreeing phylogenomic hypotheses might originate from various evolutionary processes, including but not limited to hybridization or incomplete lineage sorting, thereby leading to gene tree-versus species tree-associated discrepancies. Today, this can be expanded to genome discordance, where phylogenomic signals of organellar genomes (plastid, mitochondrial) and the nuclear genome disagree due to intrinsically different coalescent paths or phenomena like organelle capture.
Plastid Genome Evolution, Volume 85 provides a summary of recent research on plastid genome variation and evolution across photosynthetic organisms. It covers topics ranging from the causes and consequences of genomic changes, to the phylogenetic utility of plastomes for resolving relationships across the photosynthetic tree of life. This newly released volume presents thorough, up-to-date information on coevolution between the plastid and nuclear genomes, with chapters on plastid autonomy vs. nuclear control over plastid function, establishment and genetic integration of plastids, plastid genomes in alveolate protists, plastid genomes of glaucophytes, the evolution of the plastid genome in chlorophyte and streptophyte green algae, and more. - Provides comprehensive coverage of plastid genome variation by leading researchers in the field - Presents a broad range of taxonomic groups, ranging from single and multicellular algae, to the major clades of land plants - Includes thorough, up-to-date information on coevolution between the plastid and nuclear genomes
This Research Topic is part of the Mobile Elements and Plant Genome Evolution, Comparative Analyses and Computational Tools series: Mobile Elements and Plant Genome Evolution, Comparative Analyses and Computational Tools Transposable elements are very common mobile genetic elements that are composed of several classes and make up the majority of eukaryotic genomes. The movement and accumulation of mobile genetic elements have been a major force in the formation of the genes and genomes of nearly all organisms. As dispersed and ubiquitous mobile elements, their life cycle of replicative transposition leads to genome rearrangements affecting cellular function. Transposable elements are important drivers of species diversity, and they exhibit great variety in structure, size, and mechanisms of transposition, making them important putative actors in genome evolution.
The growing scale of plant-based chemicals for industrial use has generated considerable interest in developing methods to meet their desired production levels. Among various available strategies for their production, the development of Agrobacterium rhizogenes mediated hairy root cultures (HRCs) is generally considered the most feasible approach. Additionally, several proof-of-principle experiments have demonstrated the practical feasibility of HRCs in the plant-based remediation of environment pollutants, biotransformation of important compounds, and production of therapeutic proteins. Given that hairy root biotechnology has now been recognized as a promising and highly dynamic research area, this book offers a timely update on recent advances, and approaches hairy roots as a multifaceted biological tool for various applications. Further, it seeks to investigate the loopholes in existing methodologies, identify remaining challenges and find potential solutions by presenting well thought-out scientific discussions from various eminent research groups working on hairy root biotechnology. This book provides detailed conceptual and practical information on HRC-based research, along with relevant case studies. The content is divided into three broad sections, namely (i) Hairy Roots and Secondary Metabolism, (ii) Progressive Applications, and (iii) Novel Approaches and Future Prospects. By informing the research and teaching community about the major strides made in HRC-based interventions in plant biology and their applications, the book is sure to spark further research in this fascinating field.
Potatoes are a staple crop around the world. Covering all aspects of botany, production and uses, this book presents a comprehensive discussion of the most important topics for potato researchers and professionals. It assesses the latest research on plant growth such as tuber development, water use and seed production, covers all aspects of pest management and reviews postharvest issues such as storage, global markets, and of course, nutritional value and flavour.
Cheap and plentiful genome sequence data is transforming biology, and will surely transform systematics. This volume explores how.
"This spectacular book does full justice to the Compositae (Asteraceae), the largest and most successful flowering plant family with some 1700 genera and 24,000 species. It is an indispensable reference, providing the most up-to-date hypotheses of phylogenetic relationships in the family based on molecular and morphological characters, along with the corresponding subfamilial and tribal classification. The 2009 work not only integrates the extensive molecular phylogenetic analyses conducted in the last 25 years, but also uses these to produce a metatree for about 900 taxa of Compositae. The book contains 44 chapters, contributed by 80 authors, covering the history, economic importance, character variation, and systematic and phylogenetic diversity of the family. The emphasis of this work is phylogenetic; its chapters provide a detailed, current, and thoroughly documented presentation of the major (and not so major) clades in the family, citing some 2632 references. Like the Compositae, the book is massive, diverse, and fascinating. It is beautifully illustrated, with 170 figures, and an additional 108 cladograms (all consistently color-coded, based on the geographic range of the included taxa); within these figures are displayed 443 color photographs, clearly demonstrating the amazing array of floral and vegetative form expressed by members of the clade." --NHBS Environment Bookstore.
This second of two volumes on Plant Genome Diversity provides, in 20 chapters, insights into the structural evolution of plant genomes with all its variations. Starting with an outline of plant phylogeny and its reconstruction, the second part of the volume describes the architecture and dynamics of the plant cell nucleus, the third examines the evolution and diversity of the karyotype in various lineages, including angiosperms, gymnosperms and monilophytes. The fourth part presents the mechanisms of polyploidization and its biological consequences and significance for land plant evolution. The fifth part deals with genome size evolution and its biological significance. Together with Volume I, this comprehensive book on the plant genome is intended for students and professionals in all fields of plant science, offering as it does a convenient entry into a burgeoning literature in a fast-moving field.