Download Free Regional Modeling Of Greenlands Outlet Glaciers With The Parallel Ice Sheet Model Book in PDF and EPUB Free Download. You can read online Regional Modeling Of Greenlands Outlet Glaciers With The Parallel Ice Sheet Model and write the review.

The most recent report from the Intergovernmental Panel on Climate Change cites ice sheet dynamics as the greatest source of uncertainty for predicting current and future rates of sea level rise. This has prompted the development and use of ice sheet models that are capable of simulating the flow and evolution of ice sheets and their corresponding sea level contribution. In the Arctic, the Greenland ice sheet appears to be responding to a warming climate more quickly than expected. In order to determine sea level contribution from Greenland, it is necessary to capture the regional dynamics of the fast flowing outlet glaciers that drain the ice sheet. This work has developed a novel regional model capable of simulating an outlet glacier, and its associated drainage basin, as a mode of using the Parallel Ice Sheet Model. Specifically, it focuses on modeling the Jakobshavn Isbrae as a demonstration. The Jakobshavn Isbrae is one of the world's fastest flowing outlet glaciers, and accounts for nearly 5% of ice loss from the Greenland Ice Sheet. Additionally, the Jakobshavn Isbrae has been widely studied for several decades, and a wealth of remotely sensed and in situ data is available in this region. These data are used as model input and for model validation. We have completed a parameter study in this work to examine the behavior of the regional model. The purpose of this study was not to tune the model to match observations, but rather to look at the influence of parameter choices on the ice dynamics. Model results indicate that we have identified the subset of the model parameter space that is appropriate for modeling this outlet glacier. Additionally, we are able to produce some of this more interesting features that have been observed at Jakobshavn, such as the development and disintegration of a floating ice tongue and the distribution of observed surface velocities. We validate these model results by comparison with recent spatially rich measurements of ice surface speeds, as well as ice geometry.
Outlet glacier ice dynamics, including ice-flow speed, play a key role in determining Greenland Ice Sheet mass loss, which is a significant contributor to global sea-level rise. Mass loss from the Greenland Ice Sheet increased significantly over the last several decades and current mass losses of 260-380 Gt ice/yr contribute 0.7-1.1 mm/yr to global sea-level rise (~10%). Understanding the potentially complex interactions among glacier, ocean, and climate, however, remains a challenge and limits certainty in modeling and predicting future ice sheet behavior and associated risks to society. This thesis focuses on understanding the seasonal to interannual scale changes in outlet glacier velocity across the Greenland Ice Sheet and how velocity fluctuations are connected to other elements of the ice sheet-ocean-atmosphere system. 1) Interannual velocity patterns Earlier observations on several of Greenland's outlet glaciers, starting near the turn of the 21st century, indicated rapid (annual-scale) and large (>100%) increases in glacier velocity. Combining data from several satellites, we produce a decade-long (2000 to 2010) record documenting the ongoing velocity evolution of nearly all (200+) of Greenland's major outlet glaciers, revealing complex spatial and temporal patterns. Changes on fast-flow marine-terminating glaciers contrast with steady velocities on ice-shelf-terminating glaciers and slow speeds on land-terminating glaciers. Regionally, glaciers in the northwest accelerated steadily, with more variability in the southeast and relatively steady flow elsewhere. Intraregional variability shows a complex response to regional and local forcing. Observed acceleration indicates that sea level rise from Greenland may fall well below earlier proposed upper bounds. 2) Seasonal velocity patterns. Greenland mass loss includes runoff of surface melt and ice discharge via marine-terminating outlet glaciers, the latter now making up a third to a half of total ice loss. The magnitude of ice discharge depends in part on ice-flow speed, which has broadly increased since 2000 but varies locally, regionally, and from year-to-year. Research on a few Greenland glaciers also shows that speed varies seasonally. However, for many regions of the ice sheet, including wide swaths of the west, northwest, and southeast coasts where ice loss is increasing most rapidly, there are few or no records of seasonal velocity variation. We present 5-year records of seasonal velocity measurements for 55 glaciers distributed around the ice sheet margin. We find 3 distinct seasonal velocity patterns. The different patterns indicate varying glacier sensitivity to ice-front (terminus) position and likely regional differences in basal hydrology in which some subglacial systems do transition seasonally from inefficient, distributed hydrologic networks to efficient, channelized drainage, while others do not. Our findings highlight the need for modeling and observation of diverse glacier systems in order to understand the full spectrum of ice-sheet dynamics. 3) Seasonal to interannual glacier and sea ice behavior and interaction Focusing on 16 northwestern Greenland glaciers during 2009-2012, we examine terminus position, sea ice and ice m??lange conditions, seasonal velocity changes, topography, and climate, with extended 1999-2012 records for 4 glaciers. There is a strong correlation between near-terminus sea ice/mélange conditions and terminus position. In several cases, late-forming and inconsistent sea ice/mélange may induce sustained retreat. For all of the 13-year records and most of the 4-year records, sustained, multi-year retreat is accompanied by velocity increase. Seasonal speedup, which is observed across the region, may, however, be more heavily influenced by melt interacting with the subglacial hydrologic system than seasonal terminus variation. Projections of continued warming and longer ice-free periods around Greenland suggest that notable retreat over wide areas may continue. Sustained retreat is likely to be associated with multi-year speedup, though both processes are modulated by local topography. The timing of seasonal ice dynamics patterns may also shift.
The objective of this project was to develop simple yet realistic models of Greenland outlet glaciers to better understand ongoing changes and to identify possible causes for these changes. Several approaches can be taken to evaluate the interaction between climate forcing and ice dynamics, and the consequent ice-sheet response, which may involve changes in flow style. To evaluate the ice sheet response to mass-balance forcing, Van der Veen (Journal of Geophysical Research, in press) makes the assumption that this response can be considered a perturbation on the reference state and may be evaluated separately from how this reference state evolves over time. Mass-balance forcing has an immediate effect on the ice sheet. Initially, the rate of thickness change as compared to the reference state equals the perturbation in snowfall or ablation. If the forcing persists, the ice sheet responds dynamically, adjusting the rate at which ice is evacuated from the interior to the margins, to achieve a new equilibrium. For large ice sheets, this dynamic adjustment may last for thousands of years, with the magnitude of change decreasing steadily over time as a new equilibrium is approached. This response can be described using kinematic wave theory. This theory, modified to pertain to Greenland drainage basins, was used to evaluate possible ice-sheet responses to perturbations in surface mass balance. The reference state is defined based on measurements along the central flowline of Petermann Glacier in north-west Greenland, and perturbations on this state considered. The advantage of this approach is that the particulars of the dynamical flow regime need not be explicitly known but are incorporated through the parameterization of the reference ice flux or longitudinal velocity profile. The results of the kinematic wave model indicate that significant rates of thickness change can occur immediately after the prescribed change in surface mass balance but adjustments in flow rapidly diminish these rates to a few cm/yr at most. The time scale for adjustment is of the order of a thousand years or so.
The Greenland Ice Sheet, which extends south of the Arctic Circle, is vulnerable to melt in a warming climate. Complete melt of the ice sheet would raise global sea level by about 7 meters. Prediction of how the ice sheet will react to climate change requires inputs with a high degree of spatial resolution and improved simulation of the ice-dynamical responses to evolving surface mass balance. No Greenland Ice Sheet model has yet met these requirements. A three-dimensional thermo-mechanical ice sheet model of Greenland was enhanced to address these challenges. First, it was modified to accept high-resolution surface mass balance forcings. Second, a parameterization for basal drainage (of the sort responsible for sustaining the Northeast Greenland Ice Stream) was incorporated into the model. The enhanced model was used to investigate the century to millennial-scale evolution of the Greenland Ice Sheet in response to persistent climate trends. During initial experiments, the mechanism of flow in the outlet glaciers was assumed to be independent of climate change, and the outlet glaciers' dominant behavior was to counteract changes in surface mass balance. Around much of the ice sheet, warming resulted in calving front retreat and reduction of total ice sheet discharge. Observations show, however, that the character of outlet glacier flow changes with the climate. The ice sheet model was further developed to simulate observed dynamical responses of Greenland's outlet glaciers. A phenomenological description of the relation between outlet glacier discharge and surface mass balance was calibrated against recent observations. This model was used to investigate the ice sheet's response to a hypothesized 21st century warming trend. Enhanced discharge accounted for a 60% increase in Greenland mass loss, resulting in a net sea level increment of 7.3 cm by year 2100. By this time, the average surface mass balance had become negative, and widespread marginal thinning had caused 30% of historically active calving fronts to retreat. Mass losses persisted throughout the century due to flow of dynamically responsive outlets capable of sustaining high calving rates. Thinning in these areas propagated upstream into higher elevation catchments. Large drainage basins with low-lying outlets, especially those along Greenland's west coast and those fed by the Northeast Greenland Ice Stream, were most susceptible to dynamic mass loss in the 21st century.
Dynamics of Ice Sheets and Glaciers presents an introduction to the dynamics and thermodynamics of flowing ice masses on Earth. Based on an outline of general continuum mechanics, the different initial-boundary-value problems for the flow of ice sheets, ice shelves, ice caps and glaciers are systematically derived. Special emphasis is put on developing hierarchies of approximations for the different systems, and suitable numerical solution techniques are discussed. A separate chapter is devoted to glacial isostasy. The book is appropriate for graduate courses in glaciology, cryospheric sciences, environmental sciences, geophysics and related fields. Standard undergraduate knowledge of mathematics (calculus, linear algebra) and physics (classical mechanics, thermodynamics) provide a sufficient background for successfully studying the text.
This book is a comprehensive overview of the ever-captivating field of glaciation from the perspective of glacial landsystems. This approach models the many processes, forms and interactions that can be found in glaciated landscapes throughout the world. Landsystems models allow the glacial geologist and geomorphologist to evaluate these landscapes in relation to the dynamics of glaciation and to climate and geology. Glacial Landsystems brings together the expertise of an international range of specialists to provide an up-to-date summary of landsystems relevant to both modern and ancient glacier systems and also in the reconstruction and interpretation of former glacial environments. The models are applicable at all scales from ice sheets to small valley glaciers. This book is an essential reference for anyone embarking upon research or engineering surveys in glaciated basins and provides a wide-ranging handbook of glacial landsystem types for students of glaciation.
The retreat and advance of marine-terminating outlet glaciers in Greenland plays a critical role in modulating ice sheet mass balance. However, the frontal ablation processes that regulate glacier terminus position are challenging to observe and thus difficult to represent in numerical ice flow models. Current models of the Greenland Ice Sheet rely upon simple iceberg calving and submarine melt parameterization to prescribe either a stable terminus position or iceberg calving rate, yet the relative accuracies and uncertainties of these criteria remain largely unknown at the ice sheet scale. Here, we evaluate six iceberg calving models from the literature against spatially and temporally diverse observations and model output from 50 marine-terminating outlet glaciers in Greenland. Five of six calving models successfully reproduce observed May/June terminus conditions with zero median model bias and low ice-sheet-wide uncertainty using fixed, spatially-optimized parameter values. However, when evaluated against time series observations from select glaciers, we find that calving models that predict a calving rate struggle to reproduce variations in observed terminus dynamics over seasonal and inter-annual time scales with single, optimized model parameters. Comparatively, calving models that prescribe a terminus position, rather than a calving rate, more accurately account for observed changes in terminus dynamics through time and are therefore less likely to generate glacier length and/or ice flux errors when employed in predictive ice flow models. Overall, our results indicate that the crevasse depth calving model reproduces observed terminus dynamics with high fidelity and should be considered a leading candidate for use in models of the Greenland Ice Sheet.
The co-variability of glacier ice discharges and climate variability is also examined by using Polar MM5 V1 modeled summer temperature and April-September Positive Degree Day (PDD) anomalies. Ice discharges from south Greenland glaciers are found to be sensitive to temperature change. Based on sensitivities of ice discharge to melt index anomalies, time series of total ice discharge from 28 major glaciers since 1958 are modeled. The global sea level rise contribution from Greenland ice sheet during past 50 years is estimated be ∼0.6 mm yr-1 in average.
Few scientists doubt the prediction that the antropogenic release of carbon dioxide in the atmosphere will lead to some warming of the earth's climate. So there is good reason to investigate the possible effects of such a warming, in dependence of geographical and social economic setting. Many bodies, governmental or not, have organized meetings and issued reports in which the carbon dioxide problem is defined, reviewed, and possible threats assessed. The rate at which such reports are produced still increases. However, while more and more people are getting involved in the 'carbon dioxide business', the number of investigators working on the basic problems grows, in our view, too slowly. Many fundamental questions are still not answered in a satisfactory way, and the carbon dioxide building rests on a few thin pillars. One such fundamental question concerns the change in sea level associated with a climatic warming of a few degrees. A number of processes can be listed that could all lead to changes of the order of tens of centimeters (e. g. thermal expansion, change in mass balance of glaciers and ice sheets). But the picture of the carbon dioxide problem has frequently be made more dramatic by suggesting that the West Antarctic Ice Sheet is unstable, implying a certain probability of a 5 m higher sea-level stand within a few centuries.