Download Free Regional Conference Series In Applied Mathematics Book in PDF and EPUB Free Download. You can read online Regional Conference Series In Applied Mathematics and write the review.

This graduate-level textbook appeals to readers interested in the mathematical theory of disease transmission models. It is self-contained and accessible to readers who are comfortable with calculus, elementary differential equations, and linear algebra. The book provides insight into modeling cross-immunity between different disease strains (such as influenza) and the synergistic interactions between multiple diseases (e.g., HIV and tuberculosis); diseases transmitted by viral agents, bacteria, and vectors (e.g., mosquitos transmitting malaria to humans); and both epidemic and endemic disease occurrences.
Wavelets are a mathematical development that may revolutionize the world of information storage and retrieval according to many experts. They are a fairly simple mathematical tool now being applied to the compression of data--such as fingerprints, weather satellite photographs, and medical x-rays--that were previously thought to be impossible to condense without losing crucial details. This monograph contains 10 lectures presented by Dr. Daubechies as the principal speaker at the 1990 CBMS-NSF Conference on Wavelets and Applications. The author has worked on several aspects of the wavelet transform and has developed a collection of wavelets that are remarkably efficient.
Explores modern topics in graph theory and its applications to problems in transportation, genetics, pollution, perturbed ecosystems, urban services, and social inequalities. The author presents both traditional and relatively atypical graph-theoretical topics to best illustrate applications.
Covers key recent advances in combinatorial algorithms.
Presents a coherent body of theory for the derivation of the sampling distributions of a wide range of test statistics. Emphasis is on the development of practical techniques. A unified treatment of the theory was attempted, e.g., the author sought to relate the derivations for tests on the circle and the two-sample problem to the basic theory for the one-sample problem on the line. The Markovian nature of the sample distribution function is stressed, as it accounts for the elegance of many of the results achieved, as well as the close relation with parts of the theory of stochastic processes.
This second edition provides much-needed updates to the original volume. Like the first edition, it emphasizes the ideas behind the algorithms as well as their theoretical foundations and properties, rather than focusing strictly on computational details; at the same time, this new version is now largely self-contained and includes essential proofs. Additions have been made to almost every chapter, including an introduction to the theory of inexact Newton methods, a basic theory of continuation methods in the setting of differentiable manifolds, and an expanded discussion of minimization methods. New information on parametrized equations and continuation incorporates research since the first edition.
Studies two algorithms in detail: the ellipsoid method and the simultaneous diophantine approximation method.
Topics include: ways modern statistical procedures can yield estimates of pi more precisely than the original Buffon procedure traditionally used; the question of density and measure for random geometric elements that leave probability and expectation statements invariant under translation and rotation; the number of random line intersections in a plane and their angles of intersection; developments due to W.L. Stevens's ingenious solution for evaluating the probability that n random arcs of size a cover a unit circumference completely; the development of M.W. Crofton's mean value theorem and its applications in classical problems; and an interesting problem in geometrical probability presented by a karyograph.
Studies of complexity, singularity, and anomaly using nonlocal continuum models are steadily gaining popularity. This monograph provides an introduction to basic analytical, computational, and modeling issues and to some of the latest developments in these areas. Nonlocal Modeling, Analysis, and Computation includes motivational examples of nonlocal models, basic building blocks of nonlocal vector calculus, elements of theory for well-posedness and nonlocal spaces, connections to and coupling with local models, convergence and compatibility of numerical approximations, and various applications, such as nonlocal dynamics of anomalous diffusion and nonlocal peridynamic models of elasticity and fracture mechanics. A particular focus is on nonlocal systems with a finite range of interaction to illustrate their connection to local partial differential equations and fractional PDEs. These models are designed to represent nonlocal interactions explicitly and to remain valid for complex systems involving possible singular solutions and they have the potential to be alternatives for as well as bridges to existing models. The author discusses ongoing studies of nonlocal models to encourage the discovery of new mathematical theory for nonlocal continuum models and offer new perspectives on traditional models, analytical techniques, and algorithms.
This text presents a new approach to analysing initial-boundary value problems for integrable partial differential equations.