Download Free Redundancy Of Lossless Data Compression For Known Sources By Analytic Methods Book in PDF and EPUB Free Download. You can read online Redundancy Of Lossless Data Compression For Known Sources By Analytic Methods and write the review.

Lossless data compression is a facet of source coding and a well studied problem of information theory. Its goal is to find a shortest possible code that can be unambiguously recovered. Here, we focus on rigorous analysis of code redundancy for known sources. The redundancy rate problem determines by how much the actual code length exceeds the optimal code length. We present precise analyses of three types of lossless data compression schemes, namely fixed-to-variable (FV) length codes, variable-to-fixed (VF) length codes, and variable to- variable (VV) length codes. In particular, we investigate the average redundancy of Shannon, Huffman, Tunstall, Khodak and Boncelet codes. These codes have succinct representations as trees, either as coding or parsing trees, and we analyze here some of their parameters (e.g., the average path from the root to a leaf). Such trees are precisely analyzed by analytic methods, known also as analytic combinatorics, in which complex analysis plays decisive role. These tools include generating functions, Mellin transform, Fourier series, saddle point method, analytic poissonization and depoissonization, Tauberian theorems, and singularity analysis. The term analytic information theory has been coined to describe problems of information theory studied by analytic tools. This approach lies on the crossroad of information theory, analysis of algorithms, and combinatorics.
Explores problems of information and learning theory, using tools from analytic combinatorics to analyze precise behavior of source codes.
Described by Jeff Prosise of PC Magazine as one of my favorite books on applied computer technology, this updated second edition brings you fully up-to-date on the latest developments in the data compression field. It thoroughly covers the various data compression techniques including compression of binary programs, data, sound, and graphics. Each technique is illustrated with a completely functional C program that demonstrates how data compression works and how it can be readily incorporated into your own compression programs. The accompanying disk contains the code files that demonstrate the various techniques of data compression found in the book.
With the increasing popularization of the Internet, together with the rapid development of 3D scanning technologies and modeling tools, 3D model databases have become more and more common in fields such as biology, chemistry, archaeology and geography. People can distribute their own 3D works over the Internet, search and download 3D model data, and also carry out electronic trade over the Internet. However, some serious issues are related to this as follows: (1) How to efficiently transmit and store huge 3D model data with limited bandwidth and storage capacity; (2) How to prevent 3D works from being pirated and tampered with; (3) How to search for the desired 3D models in huge multimedia databases. This book is devoted to partially solving the above issues. Compression is useful because it helps reduce the consumption of expensive resources, such as hard disk space and transmission bandwidth. On the downside, compressed data must be decompressed to be used, and this extra processing may be detrimental to some applications. 3D polygonal mesh (with geometry, color, normal vector and texture coordinate information), as a common surface representation, is now heavily used in various multimedia applications such as computer games, animations and simulation applications. To maintain a convincing level of realism, many applications require highly detailed mesh models. However, such complex models demand broad network bandwidth and much storage capacity to transmit and store. To address these problems, 3D mesh compression is essential for reducing the size of 3D model representation.
The idea behind this book is to provide the mathematical foundations for assessing modern developments in the Information Age. It deepens and complements the basic concepts, but it also considers instructive and more advanced topics. The treatise starts with a general chapter on algebraic structures; this part provides all the necessary knowledge for the rest of the book. The next chapter gives a concise overview of cryptography. Chapter 3 on number theoretic algorithms is important for developping cryptosystems, Chapter 4 presents the deterministic primality test of Agrawal, Kayal, and Saxena. The account to elliptic curves again focuses on cryptographic applications and algorithms. With combinatorics on words and automata theory, the reader is introduced to two areas of theoretical computer science where semigroups play a fundamental role.The last chapter is devoted to combinatorial group theory and its connections to automata. Contents: Algebraic structures Cryptography Number theoretic algorithms Polynomial time primality test Elliptic curves Combinatorics on words Automata Discrete infinite groups
Fundamental Data Compression provides all the information students need to be able to use this essential technology in their future careers. A huge, active research field, and a part of many people's everyday lives, compression technology is an essential part of today's Computer Science and Electronic Engineering courses. With the help of this book, students can gain a thorough understanding of the underlying theory and algorithms, as well as specific techniques used in a range of scenarios, including the application of compression techniques to text, still images, video and audio. Practical exercises, projects and exam questions reinforce learning, along with suggestions for further reading.* Dedicated data compression textbook for use on undergraduate courses* Provides essential knowledge for today's web/multimedia applications* Accessible, well structured text backed up by extensive exercises and sample exam questions
M->CREATED
Use Big Data and technology to uncover real-world insights You don't need a time machine to predict the future. All it takes is a little knowledge and know-how, and Predictive Analytics For Dummies gets you there fast. With the help of this friendly guide, you'll discover the core of predictive analytics and get started putting it to use with readily available tools to collect and analyze data. In no time, you'll learn how to incorporate algorithms through data models, identify similarities and relationships in your data, and predict the future through data classification. Along the way, you'll develop a roadmap by preparing your data, creating goals, processing your data, and building a predictive model that will get you stakeholder buy-in. Big Data has taken the marketplace by storm, and companies are seeking qualified talent to quickly fill positions to analyze the massive amount of data that are being collected each day. If you want to get in on the action and either learn or deepen your understanding of how to use predictive analytics to find real relationships between what you know and what you want to know, everything you need is a page away! Offers common use cases to help you get started Covers details on modeling, k-means clustering, and more Includes information on structuring your data Provides tips on outlining business goals and approaches The future starts today with the help of Predictive Analytics For Dummies.
The Burrows-Wheeler Transform is one of the best lossless compression me- ods available. It is an intriguing — even puzzling — approach to squeezing redundancy out of data, it has an interesting history, and it has applications well beyond its original purpose as a compression method. It is a relatively late addition to the compression canon, and hence our motivation to write this book, looking at the method in detail, bringing together the threads that led to its discovery and development, and speculating on what future ideas might grow out of it. The book is aimed at a wide audience, ranging from those interested in learning a little more than the short descriptions of the BWT given in st- dard texts, through to those whose research is building on what we know about compression and pattern matching. The ?rst few chapters are a careful description suitable for readers with an elementary computer science ba- ground (and these chapters have been used in undergraduate courses), but later chapters collect a wide range of detailed developments, some of which are built on advanced concepts from a range of computer science topics (for example, some of the advanced material has been used in a graduate c- puter science course in string algorithms). Some of the later explanations require some mathematical sophistication, but most should be accessible to those with a broad background in computer science.