Download Free Redundancy Management Of Multipath Routing For Intrusion Tolerance In Heterogeneous Wireless Sensor Networks Book in PDF and EPUB Free Download. You can read online Redundancy Management Of Multipath Routing For Intrusion Tolerance In Heterogeneous Wireless Sensor Networks and write the review.

This book explores a range of important theoretical and practical issues in the field of computational network application tools, while also presenting the latest advances and innovations using intelligent technology approaches. The main focus is on detecting and diagnosing complex application performance problems so that an optimal and expected level of system service can be attained and maintained. The book discusses challenging issues like enhancing system efficiency, performance, and assurance management, and blends the concept of system modeling and optimization techniques with soft computing, neural network, and sensor network approaches. In addition, it presents certain metrics and measurements that can be translated into business value. These metrics and measurements can also help to establish an empirical performance baseline for various applications, which can be used to identify changes in system performance. By presenting various intelligent technologies, the book provides readers with compact but insightful information on several broad and rapidly growing areas in the computation network application domain. The book’s twenty-two chapters examine and address current and future research topics in areas like neural networks, soft computing, nature-inspired computing, fuzzy logic and evolutionary computation, machine learning, smart security, and wireless networking, and cover a wide range of applications from pattern recognition and system modeling, to intelligent control problems and biomedical applications. The book was written to serve a broad readership, including engineers, computer scientists, management professionals, and mathematicians interested in studying tools and techniques for computational intelligence and applications for performance analysis. Featuring theoretical concepts and best practices in computational network applications, it will also be helpful for researchers, graduate and undergraduate students with an interest in the fields of soft computing, neural networks, machine learning, sensor networks, smart security, etc.
This volume contains 60 papers presented at ICTIS 2015: International Conference on Information and Communication Technology for Intelligent Systems. The conference was held during 28th and 29th November, 2015, Ahmedabad, India and organized communally by Venus International College of Technology, Association of Computer Machinery, Ahmedabad Chapter and Supported by Computer Society of India Division IV – Communication and Division V – Education and Research. This volume contains papers mainly focused on ICT and its application for Intelligent Computing, Cloud Storage, Data Mining, Image Processing and Software Analysis etc.
This book discusses a broad range of cyber security issues, addressing global concerns regarding cyber security in the modern era. The growth of Information and Communication Technology (ICT) and the prevalence of mobile devices make cyber security a highly topical and relevant issue. The transition from 4G to 5G mobile communication, while bringing convenience, also means cyber threats are growing exponentially. This book discusses a variety of problems and solutions including: • Internet of things and Machine to Machine Communication; • Infected networks such as Botnets; • Social media and networking; • Cyber Security for Smart Devices and Smart Grid • Blockchain Technology and • Artificial Intelligence for Cyber Security Given its scope, the book offers a valuable asset for cyber security researchers, as well as industry professionals, academics, and students.
This brief provides an overview of recent developments in multi-hop routing protocols for Wireless Sensor Networks (WSNs). It introduces the various classifications of routing protocols and lists the pros and cons of each category, going beyond the conceptual overview of routing classifications offered in other books. Recently many researchers have proposed numerous multi-hop routing protocols and thereby created a need for a book that provides its readers with an up-to-date road map of this research paradigm. The authors present some of the most relevant results achieved by applying an algorithmic approach to the research on multi-hop routing protocols. The book covers measurements, experiences and lessons learned from the implementation of multi-hop communication prototypes. Furthermore, it describes future research challenges and as such serves as a useful guide for students and researchers alike.
Sensor nodes in a distributed sensor network can fail due to a variety of reasons, e.g., harsh environmental conditions, sabotage, battery failure, and component wear-out. Since many wireless sensor networks are intended to operate in an unattended manner after deployment, failing nodes cannot be replaced or repaired during field operation. Therefore, by designing the network to be fault-tolerant, we can ensure that a wireless sensor network can perform its surveillance and tracking tasks even when some nodes in the network fail. In this paper, we describe a fault-tolerant self organization scheme that designates a set of backup nodes to replace failed nodes and maintain a backbone for coverage and communication. The proposed scheme does not require a centralized server for monitoring node failures and for designating backup nodes to replace failed nodes. It operates in a fully distributed manner and it requires only localized communication. This scheme has been implemented on top of an energy-efficient self-organization technique for sensor networks. The proposed fault-tolerance-node selection procedure can tolerate a large number of node failures using only localized communication, without losing either sensing coverage or communication connectivity.
Industrial Wireless Sensor Networks: Monitoring, Control and Automation explores the explosive growth that has occurred in the use of wireless sensor networks in a variety of applications during the last few years. As wireless technology can reduce costs, increase productivity, and ease maintenance, the book looks at the progress in standardization efforts regarding reliability, security, performance, power consumption, and integration. Early sections of the book discuss issues such as media access control (MAC), antenna design and site survey, energy harvesting, and explosion-proof design. Subsequent sections present WSN standards, including ISA100, ZigBeeT, WifiT, WirelessHARTT and 6loWPAN, and the applications of WSNs in the oil and gas, chemical, food, and nuclear power industries.
The advances in low-power electronic devices integrated with wireless communication capabilities are one of recent areas of research in the field of Wireless Sensor Networks (WSNs). One of the major challenges in WSNs is uniform and least energy dissipation while increasing the lifetime of the network. This is the first book that introduces the energy efficient wireless sensor network techniques and protocols. The text covers the theoretical as well as the practical requirements to conduct and trigger new experiments and project ideas. The advanced techniques will help in industrial problem solving for energy-hungry wireless sensor network applications.
Learn the fundamental concepts, major challenges, and effective solutions in wireless sensor networking This book provides a comprehensive and systematic introduction to the fundamental concepts, major challenges, and effective solutions in wireless sensor networking (WSN). Distinguished from other books, it focuses on the networking aspects of WSNs and covers the most important networking issues, including network architecture design, medium access control, routing and data dissemination, node clustering, node localization, query processing, data aggregation, transport and quality of service, time synchronization, network security, and sensor network standards. With contributions from internationally renowned researchers, Wireless Sensor Networks expertly strikes a balance between fundamental concepts and state-of-the-art technologies, providing readers with unprecedented insights into WSNs from a networking perspective. It is essential reading for a broad audience, including academic researchers, research engineers, and practitioners in industry. It is also suitable as a textbook or supplementary reading for electrical engineering, computer engineering, and computer science courses at the graduate level.
This book provides a comprehensive yet easy coverage of ad hoc and sensor networks and fills the gap of existing literature in this growing field. It emphasizes that there is a major interdependence among various layers of the network protocol stack. Contrary to wired or even one-hop cellular networks, the lack of a fixed infrastructure, the inherent mobility, the wireless channel, and the underlying routing mechanism by ad hoc and sensor networks introduce a number of technological challenges that are difficult to address within the boundaries of a single protocol layer. All existing textbooks on the subject often focus on a specific aspect of the technology, and fail to provide critical insights on cross-layer interdependencies. To fully understand these intriguing networks, one need to grasp specific solutions individually, and also the many interdependencies and cross-layer interactions.