Download Free Redox Signaling In Neurodegenerative Diseases Biomarkers Targets And Therapies Book in PDF and EPUB Free Download. You can read online Redox Signaling In Neurodegenerative Diseases Biomarkers Targets And Therapies and write the review.

Redox homeostasis results from the balance between the production of reactive species (e.g. ROS, RNS, etc) and their detoxification by endogenous or exogenous antioxidants. ROS play several important physiological roles, however, their excessive production or impaired detoxification is associated with oxidative stress and cellular injury. Importantly, oxidative damage to vulnerable central nervous system (CNS) cells is a common pathological feature of several neurodegenerative diseases. Antioxidants have been considered as attractive potential therapeutic agents to prevent or halt disease progression but the clinical efficacy of antioxidant treatment strategies is still marginal. Improvement of antioxidant therapy effectiveness might involve adjustment of preclinical to clinical settings and development of new efficient delivery methods and will require a more in-depth knowledge of cellular redox-signaling mechanisms. Promising novel redox-based therapeutic strategies are gaining relevance to combat oxidative stress associated with neurodegenerative diseases. These include boosting the endogenous antioxidant machinery through activation of the antioxidant master regulator Nrf2 (nuclear factor erythroid 2-related factor 2) or modulation of ROS production by NOX (nicotinamide adenine dinucleotide phosphate (NADPH) oxidase) inhibitors. Redox regulation of key cellular functions is currently recognized as an important cellular signaling mechanism and events such as post-translational modifications (e.g. S_glutathionylation, S_nitrosylation, glycosylation, etc) play important roles in redox signal transduction and might be instrumental to uncover pathological mechanisms and identify novel therapeutic targets in neurodegenerative diseases. This Research Topic focuses on redox signaling mechanisms and aims to provide novel insights into the role of redox-signaling, with particular emphasis on redox regulation involving post-translational modifications, in the pathophysiology of neurodegenerative diseases. Moreover, it aims to present an overview of the potential of antioxidants as therapeutics for CNS disorders with a special focus on emerging novel therapeutic redox-based strategies. We are particularly interested in studies: -addressing new redox-based molecular mechanisms contributing to neurodegenerative diseases; -exploring the role of naturally occurring compounds, standard medications, and nutraceuticals with antioxidant properties in modulating redox-signaling pathways and limiting and/or preventing oxidative damage associated with these disorders; -addressing mechanistically the role of post-translational modifications in the pathophysiology of neurodegenerative disorders.
This book aims to present the age-related alterations in redox signaling networks and their diagnostic biomarkers in aging cells using multidisciplinary approach. Establishing sensitive and specific biomarkers of dynamic redox homeostasis is crucially important in the development of effective antiaging and senolytic interventions. Recent years have seen tremendous advances in the understanding of redox signaling events which highlight the process of aging and age-related pathologies. A major challenge in biological aging research is developing reliable biomarkers to determine the consequences of disrupted redox signaling networks long before the clinical diagnosis of age-related diseases is made. Therefore, we have chosen to concentrate on aging-induced aberrant redox signaling networks, their biomarkers, and pathological consequences in this book. Although oxidation is a natural metabolic process, the imbalance in the level of oxidants and antioxidants causes oxidative stress and eventually leads to inflammatory conditions, diabetes, neurodegenerative diseases, and cancer. Novel redox-sensitive biomarkers for the evaluation of aging-induced proteinopathies such as amyloid ß and tau proteins in Alzheimer's disease, α-synuclein in Parkinson's disease, and islet amyloid polypeptides in type 2 diabetes mellitus recently drew the attention of researchers. Inside this textbook, readers will find comprehensive perspectives on the association between redox homeostasis and the aging process both at the molecular and clinical levels. Due to the inherent relationship between impaired metabolic activities and oxidative stress, the temporal interaction between intermediary metabolism and disturbed redox status can lead to greater susceptibility to aging-induced diseases and disorders, such as cardiovascular diseases, hypertension, and diabetes. This knowledge could be a key to continued research toward improving medication regimens such as in cancer and cardiovascular therapies, and procedural outcomes for patients. This book brings together current research evidence and knowledge on redox signaling and biomarkers in aging in chapters written by leading global experts in this rapidly evolving field. We hope that this textbook is of interest to a wide group of researchers, advanced students, scientifically curious non-specialist readers and clinicians alike.
Oxidative stress is the result of an imbalance in pro-oxidant/antioxidant homeostasis that leads to the generation of toxic reactive oxygen species. Brain cells are continuously exposed to reactive oxygen species generated by oxidative metabolism, and in certain pathological conditions defense mechanisms against oxygen radicals may be weakened and/or overwhelmed. DNA is a potential target for oxidative damage, and genomic damage can contribute to neuropathogenesis. It is important therefore to identify tools for the quantitative analysis of DNA damage in models on neurological disorders. This book presents detailed information on various neurodegenerative disorders and their connection with oxidative stress. This information will provide clinicians with directions to treat these disorders with appropriate therapy and is also of vital importance for the drug industries for the design of new drugs for treatment of degenerative disorders.* Contains the latest information on the subject of neurodegenerative disorders* Reflects on various factors involved in degeneration and gives suggestions for how to tackle these problems
The editor of this volume, having research interests in the field of ROS production and the damage to cellular systems, has identified a number of enzymes showing ·OH scavenging activities details of which are anticipated to be published in the near future as confirmatory experiments are awaited. It is hoped that the information presented in this book on NDs will stimulate both expert and novice researchers in the field with excellent overviews of the current status of research and pointers to future research goals. Clinicians, nurses as well as families and caregivers should also benefit from the material presented in handling and treating their specialised cases. Also the insights gained should be valuable for further understanding of the diseases at molecular levels and should lead to development of new biomarkers, novel diagnostic tools and more effective therapeutic drugs to treat the clinical problems raised by these devastating diseases.
The focus of this collection of illustrated reviews is to discuss the systems biology of free radicals and anti-oxidants. Free radical induced cellular damage in a variety of tissues and organs is reviewed, with detailed discussion of molecular and cellular mechanisms. The collection is aimed at those new to the field, as well as clinicians and scientists with long standing interests in free radical biology. A feature of this collection is that the material also brings insights into various diseases where free radicals are thought to play a role. There is extensive discussion of the success and limitations of the use of antioxidants in several clinical settings.
In the past few years there has been the increased recognition that the effects of oxidative stress are not limited to the damage of cellular constituents. There is now evidence that reactive oxygen species (ROS) can alter cell function by acting upon the intermediates, or second messengers, in signal transductions. Such effects on signaling mechanisms probably account for the role of oxidative stress in inflammation, aging, and cancer. This volume brings together internationally recognized researchers in both the major areas covered by the book, oxidative stress and signal transduction. The work is organized in three sections. The first deals with the immediate cellular responses to oxidative stress and the production of second messengers. The second details the connection between second messengers and the gene. The third part looks more closely at the level of the gene.
Methodology and applications of redox proteomics The relatively new and rapidly changing field of redox proteomics has the potential to revolutionize how we diagnose disease, assess risks, determine prognoses, and target therapeutic strategies for people with inflammatory and aging-associated diseases. This collection brings together, in one comprehensive volume, a broad array of information and insights into normal and altered physiology, molecular mechanisms of disease states, and new applications of the rapidly evolving techniques of proteomics. Written by some of the finest investigators in this area, Redox Proteomics: From Protein Modifications to Cellular Dysfunction and Diseases examines the key topics of redox proteomics and redox control of cellular function, including: * The role of oxidized proteins in various disorders * Pioneering studies on the development of redox proteomics * Analytical methodologies for identification and structural characterization of proteins affected by oxidative/nitrosative modifications * The response and regulation of protein oxidation in different cell types * The pathological implications of protein oxidation for conditions, including asthma, cardiovascular disease, diabetes, preeclampsia, and Alzheimer's disease Distinguished by its in-depth discussions, balanced methodological approach, and emphasis on medical applications and diagnosis development, Redox Proteomics is a rich resource for all professionals with an interest in proteomics, cellular physiology and its alterations in disease states, and related fields.
This book contains a broad survey on the peroxiredoxins. It involves almost all groups that contributed significant insights into the emerging field. Coverage discusses the diverse biological roles of the new protein family in the context of other antioxidant systems like those based on heme or selenium catalysis. In addition, the book highlights related future perspectives.
Proper folding of proteins is crucial for cell function. Chaperones and enzymes that post-translationally modify newly synthesized proteins help ensure that proteins fold correctly, and the unfolded protein response functions as a homeostatic mechanism that removes misfolded proteins when cells are stressed. This book covers the entire spectrum of proteostasis in healthy cells and the diseases that result when control of protein production, protein folding, and protein degradation goes awry.
Methods in Toxicology, Volume 2: Mitochondrial Dysfunction provides a source of methods, techniques, and experimental approaches for studying the role of abnormal mitochondrial function in cell injury. The book discusses the methods for the preparation and basic functional assessment of mitochondria from liver, kidney, muscle, and brain; the methods for assessing mitochondrial dysfunction in vivo and in intact organs; and the structural aspects of mitochondrial dysfunction are addressed. The text also describes chemical detoxification and metabolism as well as specific metabolic reactions that are especially important targets or indicators of damage. The methods for measurement of alterations in fatty acid and phospholipid metabolism and for the analysis and manipulation of oxidative injury and antioxidant systems are also considered. The book further tackles additional methods on mitochondrial energetics and transport processes; approaches for assessing impaired function of mitochondria; and genetic and developmental aspects of mitochondrial disease and toxicology. The text also looks into mitochondrial DNA synthesis, covalent binding to mitochondrial DNA, DNA repair, and mitochondrial dysfunction in the context of developing individuals and cellular differentiation. Microbiologists, toxicologists, biochemists, and molecular pharmacologists will find the book invaluable.