Download Free Redox Regulation Of Differentiation And De Differentiation Book in PDF and EPUB Free Download. You can read online Redox Regulation Of Differentiation And De Differentiation and write the review.

Cell differentiation and the development of multicellular organisms are processes of self-assembly, controlled and driven by signaling molecules and cascades including redox regulation. These reactions may have provided the energy for the first metabolic steps in the evolution of life. Today, redox modifications are established as important regulatory events in cellular functions including differentiation and development. Redox modifications of single cysteines regulate differentiation of stem cells, formation of functioning organs, and de-differentiation such as formation of cancer cells. Current cancer therapy is based on redox events as well and regeneration often reactivates developmental pathways. Understanding differentiation and de-differentiation on a molecular level is therefore a prerequisite for the continuing development of new medical therapies. This book summarizes the roles of redox regulation in development by bringing together different concepts and comparing similarities and differences between various cell types and species. An international team of contributors presents several new aspects of redox-regulated differentiation and de-differentiation, including aspects of redox medicine. Key Features Provides the first summary on this important topic Reviews redox-dependent development of model organisms and single organs Highlights the redox-regulated pathways important for differentiation processes Illustrates the potential of redox medicine Combines state-of-the-art knowledge in differentiation/development, aging/longevity, and repair/regeneration Written by leading experts in the field Related Titles Ayyanathan, K., ed. Cancer Cell Signaling: Targeting Signaling Pathways Toward Therapeutic Approaches to Cancer (ISBN 978-1-77188-067-1) Clarke, M. & J. Frampton. Stem Cells: Biology and Application (ISBN 9780-8153-4511-4) Lim, W. & B. Mayer. Cell Signaling: Principles and Mechanisms (ISBN 978-0-8153-4244-1) Wong, E., ed. Autophagy and Signaling (ISBN 978-0-367-65772-7)
Even before oxygen appeared in our athmosphere, redox reactions provided the energy for metabolic steps in the evolution of life. Redox modifications are now important in cellular functions including differentiation/development. This book compiles current knowledge regarding the roles of redox regulation in differentiation and de-differentiation.
Stem cell science has the potential to impact human reproductive medicine significantly - cutting edge technologies allow the production and regeneration of viable gametes from human stem cells offering potential to preciously infertile patients. Written by leading experts in the field Stem Cells in Reproductive Medicine brings together chapters on the genetics and epigenetics of both the male and female gametes as well as advice on the production and regeneration of gene cells in men and women, trophoblasts and endometrium from human embryonic and adult stem cells. Although focussing mainly on the practical elements of the use of stem cells in reproductive medicine, the book also contains a section on new developments in stem cell research. The book is essential reading for reproductive medicine clinicians, gynecologists and embryologists who want to keep abreast of practical developments in this rapidly developing field.
The first compilation of a wealth of knowledge on tobacco BY-2 cells, often cited as the HeLa cell line of higher plants. Basic issues of cell cycle progression, cytokinesis, cell organization and factors that are involved in these processes are covered in detail. Since the tobacco cell line is used as a tool for research in molecular and cellular biology, several chapters on such studies are also included. Further, changes of primary and secondary metabolites during culture and factors that affect these processes are treated. Last but not least, the so far unpublished historical background of the BY-2 cell line is described. This volume is a must for any scientist working in the field of plant biology.
In the 17th century, Descartes put forth the metaphor of the machine to explain the functioning of living beings. In the 18th century, La Mettrie extended the metaphor to man. The clock was then used as the paradigm of the machine. In the 20th century, this metaphor still held but the clock was replaced by a computer. Nowadays, the organism is viewed as a robot obeying signals emanating from a computer program controlled by genetic information. This book shows that such a conception leads to contradictions not only in the theory of biology but also in its experimental research program, thereby impeding its development. The analysis of this problem is based on the most recent experimental data obtained in molecular biology as well as the history and philosophy of biology. It shows that the machine theory did not succeed in breaking with Aristotle's finalism. The book presents a new approach to biological systems based on cellular Darwinism. Genes are ruled by probabilistic mechanisms allowing cells to differentiate stochastically. Embryo development is not governed by a determinist genetic program but by natural selection occurring among cell populations inside the organism. This theory has considerable philosophical consequences. Man may be a machine but he is a random one.
“Infogest” (Improving Health Properties of Food by Sharing our Knowledge on the Digestive Process) is an EU COST action/network in the domain of Food and Agriculture that will last for 4 years from April 4, 2011. Infogest aims at building an open international network of institutes undertaking multidisciplinary basic research on food digestion gathering scientists from different origins (food scientists, gut physiologists, nutritionists...). The network gathers 70 partners from academia, corresponding to a total of 29 countries. The three main scientific goals are: Identify the beneficial food components released in the gut during digestion; Support the effect of beneficial food components on human health; Promote harmonization of currently used digestion models Infogest meetings highlighted the need for a publication that would provide researchers with an insight into the advantages and disadvantages associated with the use of respective in vitro and ex vivo assays to evaluate the effects of foods and food bioactives on health. Such assays are particularly important in situations where a large number of foods/bioactives need to be screened rapidly and in a cost effective manner in order to ultimately identify lead foods/bioactives that can be the subject of in vivo assays. The book is an asset to researchers wishing to study the health benefits of their foods and food bioactives of interest and highlights which in vitro/ex vivo assays are of greatest relevance to their goals, what sort of outputs/data can be generated and, as noted above, highlight the strengths and weaknesses of the various assays. It is also an important resource for undergraduate students in the ‘food and health’ arena.
Protein carbonylation has attracted the interest of a great number of laboratories since the pioneering studies at the Earl Stadtman’s lab at NIH started in early 1980s. Since then, detecting protein carbonyls in oxidative stress situations became a highly efficient tool to uncover biomarkers of oxidative damage in normal and altered cell physiology. In this book, research groups from several areas of interest have contributed to update the knowledge regarding detection, analyses and identification of carbonylated proteins and the sites where these modifications occur. The scientific community will benefit from these reviews since they deal with specific, detailed technical approaches to study formation and detection of protein carbonyls. Moreover, the biological impact of such modifications in metabolic, physiologic and structural functions and, how these alterations can help understanding the downstream effects on cell function are discussed. Oxidative stress occurs in all living organisms and affects proteins and other macromolecules: Protein carbonylation is a measure of oxidative stress in biological systems Mass spectrometry, fluorescent labelling, antibody based detection, biotinylated protein selection and other methods for detecting protein carbonyls and modification sites in proteins are described Aging, neurodegenerative diseases, obstructive pulmonary diseases, malaria, cigarette smoke, adipose tissue and its relationship with protein carbonylation Direct oxidation, glycoxidation and modifications by lipid peroxidation products as protein carbonylation pathways Emerging methods for characterizing carbonylated protein networks and affected metabolic pathways
This book focuses on the impacts of anthropogenic radiation on wildlife and ecosystems and provides an in-depth look at the approaches and available tools we can use to gain information about biological effects of radiation in the environment. The nuclear accidents in Chornobyl in 1986 and Fukushima in 2011 focussed the attention of the world on the vulnerability of ecosystems to radiation. In Chornobyl, there still remains an exclusion zone where levels are considered to be too high for people and impacts on terrestrial and aquatic ecosystems can still be measured 35 years later. In the area impacted by the Fukushima disaster, intense remediation is still under way at tremendous cost and causing widespread disruption to the environment. That accident impacted the terrestrial and marine ecosystems. In both accidents it became obvious that a radiation protection framework focussing on protection of “humans” (a single species) and using evacuation as a key strategy, was not sufficient to protect the natural environment. The complexity of ecosystems makes developing a protection framework very challenging but in order to even start the process it is vital to gather information about likely impacts of low dose exposures on wildlife and to develop monitoring tools to measure changes over time. This book contains reviews and original research aimed at filling our knowledge gaps about these important areas. Environmental Radiobiology will be a key resource for academics, researchers, and advanced students of Radiobiology, Radioecology, Biology, Ecology, Biomedicine and Research Methods. The chapters included in this book were originally published as a special issue of International Journal of Radiation Biology.
Describes the basics of ROS metabolism in plants and examines the broad range of ROS signaling mechanisms New discoveries about the effects of reactive oxygen species (ROS) on plants have turned ROS from being considered a bane into a boon, because their roles have been discovered in many plant developmental processes as signaling molecules. This comprehensive book teaches about the role of ROS metabolism in plants and how they affect various developmental processes. It also discusses in detail the advancements made in understanding the ROS signaling. Reactive Oxygen Species in Plants: Boon Or Bane - Revisiting the Role of ROS begins by presenting the basic introduction to ROS and deciphers the detailed knowledge in ROS research. It then examines the broad range of ROS signaling mechanisms as well as how they may be beneficial for plants and human beings. This book also describes both the bane and boon aspects of ROS with their impact on plants, and how the recent revelations have compelled us to rethink ROS turning from stressors to plant regulators. ● Compiles, for the first time, the wholesome knowledge in ROS research and their cellular signaling ● Includes new discoveries and in-depth discussions about the advancements made in the field ● Discusses reactive oxygen species which are involved in a broad range of biological processes Reactive Oxygen Species in Plants: Boon Or Bane - Revisiting the Role of ROS will help scientists to utilize the functions of ROS signaling for plants and also enable readers to gain a deeper knowledge of ROS research and signaling. It is highly recommended for researchers, scientists, and academicians in plant science as well for advanced undergraduate and postgraduate students.